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Functions of A Complex Variable I 
Instructor: Professor Gregery Buzzard 

Course Number: MA 53000 
Credits: Three 

Time: 1:30–2:20 PM MWF 

Catalog Description 

 
Complex numbers and complex-valued functions of one complex variable; differentia- 
tion and contour integration; Cauchy’s theorem; Taylor and Laurent series; residues; 
conformal mapping; special topics. More mathematically rigorous than MA 52500. 
 
 

 
Elements of Stochastic Processes 

Instructor: Professor Christopher Janjigian 
Course Number: MA 53200, STAT 53200 

Credits: Three 
Time: 11:30–12:20 PM MWF 

Catalog Description 

 
A basic course in stochastic models, including discrete and continuous time Markov 
chains and Brownian motion, as well as an introduction to topics such as Gaussian 
processes, queues, epidemic models, branching processes, renewal processes, replace- 
ment, and reliability problems. 
 
 

 
Probability Theory I 

Instructor: Professor Chandra, Ajay 
Course Number: MA 53800, STAT 538 

Credits: Three 
Time: 12:00–1:15 PM TTh 

Catalog Description 
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Mathematically rigorous, measure-theoretic introduction to probability spaces, ran- 
dom variables, independence, weak and strong laws of large numbers, conditional 
expectations, and martingales. 
 
 

 
Ordinary Differential Equations and Dynamical Systems 

Instructor: Professor Nung Kwan Yip 
Course Number: MA 54300 

Credits: Three 
Time: 12:00–1:15 PM TTh 

Description 

 
This is a beginning graduate level course on ordinary differential equations. It cov- 
ers basic results for linear systems, local theory for nonlinear systems (existence 
and uniqueness, dependence on parameters, flows and linearization, stable manifold 
theorem) and their global theory (global existence, limit sets and periodic orbits, 
Poincare maps). Some further topics include bifurcations, averaging techniques and 
applications to Hamiltonian mechanics and population dynamics. 

Prerequisites: one undergraduate course in each of the following topics: linear 
algebra (for example, MA 265, 351), differential equation (for example, MA 266, 
366), analysis (for example, MA 341, 440, 504), or instructor’s consent. 

Main Textbook: Differentiable Dynamical Systems (Revised edition, 2017), J.D. 
Meiss (available online from Purdue Library page). 
 
 

 
Real Analysis And Measure Theory 
Instructor: Professor Monica Torres 

Course Number: MA 54400 
Credits: Three 

Time: 10:30 AM–11:20 AM MWF 

Catalog Description 
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Metric space topology; continuity, convergence; equicontinuity; compactness; bounded 
variation, Helly selection theorem; Riemann-Stieltjes integral; Lebesgue measure; ab- 
stract measure spaces; LP-spaces; Holder and Minkowski inequalities; Riesz-Fischer 
theorem. 
 

 
Introduction To Functional Analysis 
Instructor: Professor Plamen Stefanov 

Course Number: MA 54600 
Credits: Three 

Time: 10:30–11:45 AM TTh 

Description 

 
This course will be based on the book: Reed and Simon, Methods of Modern Math- 
ematical Physics, vol. I: Functional Analysis. I will cover most of the material in 
chapters II – VII there. We will start with Hilbert spaces, then consider the more 
general Banach spaces, Hanh–Banach, open mapping and the closed graph theorems. 
We will review some notions of general topology, and introduce locally convex spaces. 
In particular, I will present briefly the theory of tempered distributions. At the end 
of the course, we will study bounded linear operators on Banach and Hilbert spaces, 
including compact operators. The last topic to be covered is the Spectral Theory for 
bounded operators. 

The Reed–Simon book is considered a classic for people viewing Functional Analysis 
as a tool for Mathematical Physics (hence the title of the four–volume book), PDEs, 
and analysis in general. 
 
 

 
Introduction To Abstract Algebra 

Instructor: Professor Shubhodip Mondal 
Course Number: MA 55300 

Credits: Three 
Time: 11:30–12:20 PM MWF 

Catalog Description 
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Group theory: Sylow theorems, Jordan-Holder theorem, solvable groups. Ring the- 
ory: unique factorization in polynomial rings and principal ideal domains. Field 
theory: ruler and compass constructions, roots of unity, finite fields, Galois theory, 
solvability of equations by radicals. 
 
 

 
Linear Algebra I 

Instructor: Professor Saugata Basu 
Course Number: MA 55400 

Credits: Three 
Time: 12:30–1:20 PM MWF 

Catalog Description 

 
Review of basics: vector spaces, dimension, linear maps, matrices determinants, 
linear equations. Bilinear forms; inner product spaces; spectral theory; eigenvalues. 
Modules over a principal ideal domain; finitely generated abelian groups; Jordan and 
rational canonical forms for a linear transformation. 
 
 
 

 
Abstract Algebra II 

Instructor: Professor Daniel Le 
Course Number: MA 55800 

Credits: Three 
Time: 12:30–1:20 PM MWF 

Catalog Description 

 
This course is an introduction to representation theory loosely following Representa- 
tion Theory: A First Course by Fulton and Harris and Lie Groups, Lie Algebras, and 
Representations by Hall. The course will start with representations of finite groups 
before moving on to Lie groups with an emphasis on examples. Topics may include 
character theory, Schur orthogonality, induction, the Peter–Weyl theorem, highest 
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weights, the Weyl character formula, Schur–Weyl duality, and the Borel–Weil the- 
orem. The prerequisites are group theory and linear algebra (including multilinear 
algebra and tensor products). Familiarity with manifolds will be very useful but not 
essential. 
 
 
 

 
Introduction In Algebraic Topology 
Instructor: Professor Manuel Rivera 

Course Number: MA 57200 
Credits: Three 

Time: 1:30–2:45 PM TTh 

Description 
 
This course will be an introduction to algebraic topology. The main topics to be covered 
are: 

1) singular homology and Eilenberg-Steenrod axioms 

2) computational methods based on cellular homology of CW complexes and homological 
algebra 

4) Cohomology ring 

5) Poincaré duality of manifolds 

Along the way will introduce some basic category theory, simplicial techniques, and develop the 
necessary homological algebra. These tools were born in the context of algebraic topology but 
are widely used throughout modern mathematics. We will assume familiarity with basic point set 
topology, covering spaces, and the fundamental group, as discussed in MA571. We will also 
assume some basic results in algebra such as the classification theorem of finitely generated 
abelian groups.  

 

 

 
Graph Theory 

Instructor: Professor Giulio Caviglia 
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Course Number: MA 57500 
Credits: Three 

Time: 12:00–1:15 PM TTh 

Catalog Description 
 
Introduction to graph theory with applications. 
 
 

Introduction to Additive Combinatorics 
Instructor: Professor Ilia Shkredov 

Credits: Three 
Time: 2:30–3:20 PM MWF 

Description 

 
Additive combinatorics is a rapidly developing field of modern mathematics, located 
at the intersection of number theory and combinatorics. It utilizes a diverse set of 
tools, including dynamical systems, computer science, probability theory, geometry, 
and algebra. Roughly speaking, additive combinatorics is the study of combinatorial 
problems expressed through the group operation. 

A foundational result that illustrates the field’s concerns is Cauchy’s theorem (1813) 
on addition in Z/pZ. The theorem says that for two sets A, B in Z/pZ, the size of the 
sumset A + B := {a + b : a ∈ A, b ∈ B} is either equal to p or is at least |A| +|B|− 1. 
This provides a general combinatorial statement about arbitrary sets, where the 
combinatorics is intrinsically linked to the group operation of addition. Other land- 
mark results in additive combinatorics include van der Waerden’s theorem on arith- 
metic progressions (which Khinchin called “a pearl of number theory”), Freiman’s 
structural theorem on sumsets, the remarkable Green–Tao theorem on arithmetic 
progressions within the prime numbers, the Bourgain–Glibichuk–Konyagin theorem 
on the uniform distribution of multiplicative subgroups, and many others. 

This course will introduce the fundamental results of the area and explore the rela- 
tionships between additive combinatorics and other branches of mathematics, such 
as number theory, combinatorics, ergodic theory, graph theory, Fourier analysis, and 
geometry. 

Extended Program: 
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1. Introduction and Coloring Problems. 

2. Combinatorial Ergodic Theory and the Regularity Lemma. 

3. Sumsets and Difference Sets. 

4. Applications of Fourier Analysis in Additive Combinatorics. 

5. Sets with no Arithmetic Progressions of Length Three. 

6. Bohr Sets and the Spectrum. 

7. Almost Periodicity. 

8. Freiman’s Theorem on Sets with Small Doubling. 

9. The Sum-Prod uct Phenomenon: The Real Case. 

10. The Sum-Product Phenomenon: The Finite Field Case. 

11. Gowers Norms. 

12. Multiplicative Combinatorics. 

 
Book: Terence Tao and Van H. Vu, Additive combinatorics 

Prerequisites: 16*** (first year calculus). 
All levels, undergraduate/graduate. 
 
 

 
Complex algebraic geometry and abelian varieties 

Instructor: Professor Donu Arapura 
Course Number: MA 59500CAG 

Credits: Three 
Time: 12:00–1:15 PM MWF 

Description 

 
This is a course on complex algebraic geometry with special emphasis on class of 
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algebraic varieties called abelian varieites. These are higher dimensional analogues 
of elliptic curves. A fundamental theorem in complex algebraic geometry is Kodaira’s 
embedding theorem, which tells us when a compact complex manifold is a smooth 
projective variety. When applied to a torus Cg/L, Kodaira’s theorem reduces to 
an old theorem of Riemann characterizing abelian varieties. I probably won’t prove 
Kodaira’s theorem in full generality, but I will prove Riemann’s theorem since it is 
not that difficult. Although Abelian vari eties are somewhat special, we will see that 
any nonsingular projective variety can be “linearized” to obtain an abelian variety 
called the Albanese variety. This is a very important tool in algebraic geometry. 
This is more or less the content of part I. 

Part II will discuss some more advanced topics such as moduli theory of abelian 
varieties. Depending on how well people follow the first part, I might go on to 
discuss proof of Deligne’s theorem, and its refinement by Andr´e, that Hodge cycles 
on Abelian varieties are absolute/motivated. 

Although, I won’t follow any textbook closely, I will suggest the following references 
[1, 3, 4] below. I’ll also type up notes as I go. As far as prerequisites are concerned, 
a good knowledge of basic algebra and complex analysis and topology is essential. 
And something more at the level of basic algebraic geometry, differential geometry, 
or algebraic topology would be recommended as well. 
 

1. Birkenhake, Lange, Complex Abelian varieties 

2. Deligne, Milne, Ogus, Shi, Hodge cycles, motives and Shimura varieties 

3. Griffiths, Harris, Principles of Algebraic Geometry 

4. Mumford, Abelian varieites 
 
 
 
 

An Introduction to Kasparov’s KK-Theory 
Instructor: Professor Marius Dadarlat 

Course Number: MA 59500KK 
Credits: Three 

Time: 4:30–5:45 PM TTh 

Description 
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This course offers an introduction to Gennadi Kasparov’s bivariant K-theory, a pow- 
erful framework in noncommutative geometry and operator algebras. KK-theory 
sheds new light on topological K-theory and K-homology by unifying them and 
extending their reach to the setting of C∗-algebras. It provides important tools 
for the study of elliptic operators and index theorems. While the course empha- 
sizes applications to operator algebras, it also explores important connections to the 
Atiyah–Singer index theorem. 

1 List of Topics on KK-Theory 

1. C∗-algebras and Hilbert C∗-modules 

2. Adjointable and compact operators on Hilbert modules 

3. Review of K-theory for C∗-algebras and Bott periodicity 

4. Kasparov modules: definitions, examples, and degeneracy 

5. Construction of KK-groups and basic properties 

6. Functoriality in KK-theory 

7. The Kasparov product and its properties 

8. Six-term exact sequences in KK-theory 

9. Categorical perspectives and universal coefficient theorems 

10. Applications to classification theory of amenable C∗-algebras 

11. Brown-Douglas-Fillmore theory 

12. Elements of equivariant KK-theory 

13. Applications to index theory 

14. The Baum-Connes conjecture and selected applications 
 
 

2 Prerequisites 

(1) Functional analysis (e.g., Hilbert spaces, bounded operators). 
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(2) Basics of C∗-algebras (e.g., representations, ideals, approximate units, spectral 
theorem for normal operator, functional calculus). 

 
Familiarity with topological K-theory (e.g., vector bundles, Bott periodicity) or 
(pseudo)differential operators is helpful but not required. 

Grading: Based on attendance and in–class participation 

3 References 

• Bruce Blackadar, K-Theory for Operator Algebras (2nd ed., 1998) – Chapters 
on KK-theory and applications. 

• Kjeld Knudsen Jensen and Klaus Thomsen, Elements of KK-Theory (1991) 

• Nigel Higson and John Roe, Analytic K-Homology (Oxford Mathematical Mono- 
graphs, 2000) 

• Heath Emerson, An Introduction to C∗-Algebras and Noncommutative Geom- 
etry (Birkhäuser Advanced Texts Basler Lehrbücher, 2024) 

• Additional readings will be provided via Brightspace 

• I may also post supplementary notes. 
 
 

 
Lie Algebras 

Instructor: Professor Oleksandr Tsymbaliuk 
Course Number: MA 59500L 

Credits: Three 
Time: 2:30–3:20 PM MWF 

Description 

This is an introductory course on Lie algebras. Our main focus will be the study of 
finite-dimensional Lie algebras, with the key emphasis placed on the semisimple ones 
that admit a beautiful complete theory. The course is expected to fit a wide range 
of students: both graduate and strong undergraduate mathematics students, as well 
as graduate physics students. 
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A Lie algebra is a vector space equipped with a bilinear operation, called a Lie 
bracket. Despite this abstract definition, one should not forget their historical origin 
in the context of the Lie group theory – a mathematical treatment of continuous 
symmetries. Notably, Lie groups are determined by their linear approximation at the 
identity, called the Lie algebra of a Lie group. This allows to reformulate the theory 
in purely algebraic terms of Lie algebras (viewing them as spaces of “infinitesimal” 
symmetries) and motivates many related problems. 

While being of independent interest, this subject finds interesting applications in 
other areas of mathematics and mathematical physics: algebraic combinatorics, dif- 
ferential geometry, topology, number theory, partial differential equations, quantum 
physics, and many more. 

Tentative list of topics: Lie groups and the exponential map, nilpotent and solv- 
able Lie algebras, theorems of Engel and Lie, Cartan subalgebras, Killing form and 
Cartan’s criteria, structure of semisimple Lie algebras, root systems, Weyl group, 
Dynkin diagrams, classification and construction of semisimple Lie algebras, rep- 
resentations of semisimple Lie algebras, Weyl character formula, Casimir operator, 
theorems of Levi and Maltsev. 

Prerequisites: Basic notions from algebra, especially linear algebra (general famil- 
iarity with topology and manifold theory will be useful for the first 3 weeks). 
 
 

 
Mathematical Biology 

Instructor: Professor Alexandria Volkening 
Course Number: MA 59500MB 

Credits: Three 
Time: 9:00–10:15 AM TTh 

Description 

This course will introduce participants to mathematical biology with a mathemat- 
ical modeling-centric perspective. We will discuss several research vignettes, such 
as examples from medicine, agriculture, and developmental biology, and use bio- 
logical questions to illustrate both classic approaches and emerging techniques in 
applied mathematics. For example, we will discuss compartmental modeling, dy- 
namics on and of networks, parameter estimation, reaction-diffusion equations, and 
agent-based modeling. We will also highlight how data-driven methods, such as 
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equation learning and applied topological data analysis, are being applied in new 
ways to address challenges in mathematical biology now. Students will gain expe- 
rience building mathematical models, identifying modeling choices, choosing model 
complexity appropriately, and combining models and data. 

Complementing this, we will talk about methods for effectively communicating math- 
ematics in written and oral form, as well as collaborating across disciplinary bound- 
aries. Throughout the course, we will point out biology–math feedback loops, looking 
for how math can suggest experiments and how taking a biological perspective can 
drive new mathematical questions. In the latter portion of this course, student teams 
will each complete and present a mini research project. 

Other notes: There will be no exams, and grades will be based on participation, a 
few homework assignments, and the mini research project. In terms of background, 
experience with linear algebra and differential equations at the undergraduate level 
will be assumed, and some experience with programming is encouraged. No textbook 
is required, and course material will include instructor notes. 
 
 

 
Introduction to Number Theory 

Instructor: Professors Alisa Sedunova 
Course Number: MA 59500NT 

Credits: Three 
Time: 12:00–1:15 PM TTh 

Prerequisites: 

This course is intended for third- or fourth-year undergraduate students or beginning 
graduate students who have taken and obtained a grade of B− or better in MA 35301 
(Linear Algebra II). Students should have basic competence in mathematical proof. 

Description 

Number Theory studies the properties of integers, and includes the theory of prime 
numbers, the arithmetic structures that underlie cryptosystems such as RSA, Dio- 
phantine equations (polynomial equations to be solved in integers, including the topic 
of Fermat’s Last Theorem), and rational approximations that distinguish algebraic 
and transcendental numbers. Although a topic studied for more than two millennia, 
it is the subject of intense active current research, and connects with many other 
areas of Mathematics. 
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This course serves as an introductory exploration of Number Theory, without an 
abstract algebra prerequisite, so that final-year students without a pure mathematics 
background will find this accessible. Connections with abstract algebra will, however, 
be noted for interested students, and the material should provide reinforcement and 
preparation for abstract algebra for those with ambitions in this direction. 

Content 

The course will broadly follow the structure and spirit of An Introduction to the 
Theory of Numbers by Hardy and Wright, with selections adapted to the level and 
objectives of the class. 

We begin with the fundamental properties of prime numbers, the Euclidean algo- 
rithm, unique factorization, and the theory of congruences, including the Chinese 
Remainder Theorem. We then proceed to the multiplicative structure of the inte- 
gers modulo m, primitive roots, Legendre and Jacobi symbols, quadratic reciprocity, 
illustrative examples of quadratic congruences, and arithmetic and multiplicative 
functions. 

Subsequently, the Prime Number Theorem will be stated without proof, with em- 
phasis placed on its consequences and general significance, while establishing several 
weaker yet non-trivial estimates for the prime-counting function(s). 

The latter part of the course is devoted to binary quadratic forms and their role in 
the representation of integers, together with selected topics in Diophantine approx- 
imation and transcendence, continued fractions, Pell’s equation, aselected remarks 
related to Fermat’s Last Theorem (subject to time constraints). 

Companion Text(s) 

The following is a list of sources used by the instructor in preparing this course. 
Students are welcome to consult any of these references in addition to the lecture 
notes, although it is neither necessary nor expected that they study all of them in 
detail. 

 
(1) Introduction to Analytic Number Theory, by Tom M. Apostol, Springer, 
1976. 

(2) An Introduction to the Theory of Numbers, by G. H. Hardy and E. M. 
Wright, 6th edition, Oxford University Press, 2008. 

(3) The Distribution of Prime Numbers, by Dimitris Koukoulopoulos, Graduate 
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Studies in Mathematics, Vol. 203, American Mathematical Society, 2019. 

(4) An Introduction to the Theory of Numbers, by Ivan Niven, Herbert S. 
Zuckerman, and Hugh L. Montgomery, 5th edition, Wiley, 1991. 

(5) Introduction to Analytic and Probabilistic Number Theory, by Gérald Tenen- 
baum, 3rd edition, American Mathematical Society, 2015. 

 
The main textbook would be An Introduction to the Theory of Numbers, by G. 
H. Hardy and E. M. Wright, 6th edition, Oxford University Press, 2008. If for some 
reason this does not work, one can use An Introduction to the Theory of Numbers, 
by Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, 5th edition, Wiley, 
1991 as the textbook as well (there is a large overlap anyways). 

The course will be based on the instructor’s notes distributed via brightspace, the 
HWs are to be submitted there as well. 

Assessment 

Course credit will be based on bi-weekly homeworks —– the top 5 scores are totalled; 
two in class mid-terms and final exam. 
 
 

 
Introduction to Fourier Integral Operators 

Instructor: Professor Antonio Sa Barreto 
Course Number: MA 59500PDO 

Credits: Three 
Time: 4:30–5:45 PM TTh 

Description 

This will be a continuation of MA59500PDO taught during the fall 2025 by Prof. 
Stefanov. We will cover the calculus of Fourier integral operators (FIOs), which is 
a generalization of pseudodifferential operators. Pseudodifferential operators were 
developed as a tool to study elliptic equations, more specifically, they are used to 
construct parametrices of elliptic operators, but they are not quite suitable for con- 
structing parametrices for hyperbolic equations, such as the wave equation, and this 
is one of the main roles of FIOs. Such operators also appear in quite different con- 
texts, for example, Radon transforms and their generalizations are examples of FIOs. 
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We will carefully study the local theory of FIOs, which is already quite involved, and 
we will touch upon the global theory of FIOs. We will cover applications to scattering 
and spectral theory. We will mostly follow the textbook Microlocal Analysis for 

Differential Operators, by A. Grigis and J. Sjöstrand (London Mathematical Society 
Lecture note Series, #196. Cambridge University Press), but we will use other 
sources for applications of the theory. 
 
 

 
Finite Tensor Categories and Quantum Invariants 

Instructor: Professor Xingshan(Shawn) Cui 
Course Number: MA 59500QI 

Credits: Three 
Time: 1:30–2:45 PM TTh 

Description 

Fusion categories, quantum groups, and quantum invariants of knots and 3-manifolds 
form a remarkably deep triangle of ideas at the intersection of algebra, topology, and 
physics. Classically, the semisimple framework of fusion categories has played a cen- 
tral role in producing powerful invariants of knots and 3-manifolds, such as the Jones 
polynomial. However, to push beyond existing boundaries, it has become increas- 
ingly important to generalize these ideas to non-semisimple settings for compelling 
reasons. 

First, the representation categories of quantum groups at roots of unity are not auto- 
matically semisimple. Second, it has been shown that 3-manifold invariants derived 
from non-semisimple tensor categories often capture more subtle and powerful in- 
formation than their semisimple counterparts. Finally, in dimension four, quantum 
invariants constructed from semisimple categories fail to distinguish smooth struc- 
tures on 4-manifolds. 

This course introduces the construction of quantum invariants of knots and mani- 
folds from categories that are not necessarily semisimple, with the semisimple case 
appearing naturally as a special instance. The first half of the course develops the 
algebraic foundations, beginning with (locally) finite Abelian categories and adding 
structures such as tensor products, duality, braiding, and twists, while covering key 
topics including projective covers, projective generators, modified quantum traces, 
and chromatic morphisms. The second half shifts to a more topological perspective, 
exploring skein modules on surfaces and 3-manifolds, and constructing quantum in- 
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variants of knots, 3-manifolds, and 4-manifolds from finite tensor categories. More 
generally, the course will show how such constructions give rise to topological quan- 

tum field theories that capture richer information than invariants alone, with classi- 
cal theories such as Reshetikhin-–Turaev and Crane–Yetter appearing along the way; 
background on surgery and handle decompositions of manifolds will also be included. 

The course is designed to be largely self-contained, though familiarity with basic 
category theory (functors, natural transformations), module theory (representations 
of groups and algebras), and basic topology (manifolds, knots) will be helpful. 
 
 

 
The Topology, Geometry, and Algebra of Loop Spaces 

Instructor: Professor Manuel Rivera 
Course Number: MA 59500TGA 

Credits: Three 
Time: 12:00–1:15 PM TTh 

Description 

Course Description: Spaces of loops, paths, and strings in a background geometric 
space are ubiquitous across mathematics and physics. This course will explore both 
classical results and modern research directions concerning the structure of loop 
spaces, with an emphasis on their broad relevance to topology, geometry, algebra, 
and mathematical physics. While the exact trajectory will depend on the interests 
of participants, possible topics include: 

1) The topology of loop spaces: continuous, piece-wise linear, smooth, H1-loops, the 
compact-open topology, fibrations 

2) The algebraic topology of loop spaces I: singular and simplicial (co)homology, 
Serre spectral sequence, homotopy groups, loop spaces and classifying spaces 

3) The algebraic topology of loop spaces II: operads, iterated loop spaces, and recog- 
nition principle 

4) Combinatorial models for loop spaces: simplicial and cubical constructions, poly- 
topes inspired by loop spaces 

5) Loop spaces and homological algebra: Hochschild an cyclic homology of algebras 
and coalgebras and their relevance to loop spaces in topology and geometry, iterated 
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integrals 
6) The geometry of loop spaces I: infinite dimensional manifolds, Riemannian metrics, 
length and energy functional, Morse theory 

7) The geometry of loop spaces II: closed geodesics, the Gromoll–Mayer Theorem, 
Bott’s iteration of the index formulas, Vigué–Poirrier–Sullivan Theorem 

8) The geometry of loop spaces III: quantitative topology 

9) Loop spaces and symplectic topology: relation between loop space homology and 
the symplectic homology of the cotangent bundle 

10) String topology: what we know about the structure, meaning, and computation 
of operations on loop spaces constructed through intersection theory 

The course is open to advanced undergraduates, graduates, faculty, and anyone with 
basic knowledge of algebraic topology and differential geometry. 
 
 

 
Numerical Methods for PDEs 

Instructor: Professor Di Qi 
Course Number: MA 61500 

Credits: Three 
Time: 9:30–10:20 AM MWF 

Description 

This is an introductory course of numerical solutions to partial differential equations 
for any graduate students and senior undergraduates interested in computational 
mathematics, with emphasis on breadth rather than depth. The course will cover 
key concepts with a balance between analysis and implementation, including ac- 
curacy, stability and convergence of finite difference methods for time-dependent 
problems such as wave equations, parabolic equations and conservation laws. The 
finite element method for elliptic equations on structured meshes will also be intro- 
duced. Linear system solvers such as the conjugate gradient method and the multi- 
grid method, and ODE solvers such as Runge–Kutta method will also be discussed. 
Sample Matlab codes will be provided to assist beginners, thus no prior knowledge 
of coding is required. Recommended prerequisites include linear partial differential 
equations, linear algebra, and Fourier analysis, all of which will be reviewed during 
the lectures. Feel free to send an email to qidi@purdue.edu for any questions. 

mailto:qidi@purdue.edu
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Methods of Linear and Nonlinear Partial Differential Equations II 
Instructor: Professor Matthew Novack 

Course Number: MA 64300 
Credits: Three 

Time: 9:00–10:15 AM TTh 

Description 

This is a continuation of Math 642 and is the second semester in a one-year course 
on the theory of PDEs. Topics to be covered include Calderon–Zygmund theory, 
elliptic regularity theory, and an introduction to linear and nonlinear parabolic and 
hyperbolic PDEs. We will draw on the texts of Gilbarg and Trudinger, as well as 
notes by C. Mooney, T. Elgindi, and others. There will be no required textbook 
since I will produce my own course notes. 
 
 
 
 

Instructor: Professor Nicholas McCleerey 
Course Number: MA 66100 

Credits: Three 
Time: 3:00–4:15 PM TTh 

Description 
 
 
 

Algebraic Geometry II 
Instructor: Professor Takumi Murayama 

Course Number: MA 66500 
Credits: Three 

Time: 12:00–1:15 PM TTh 

Description 

 
This course is the second course in a two semester introductory sequence in algebraic 
geometry. Algebraic geometry is the geometric study of solutions to systems of 
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polynomial equations. Algebraic geometry has interactions with many other fields 
of mathematics, including commutative algebra, algebraic topology, number theory, 
several complex variables, and complex geometry. 

This second course will mainly focus on the theory of schemes, including the nec- 
essary background on sheaves and their cohomology. Planned topics (subject to 
change) include the following: Sheaves of Abelian groups. Locally ringed spaces and 
sheaves of modules. Schemes, properties of schemes. Separated, proper, and pro- 
jective morphisms of schemes. Cartier and Weil divisors. Sheaves of differentials. 
Derived functors and sheaf cohomology. Čech cohomology, cohomology of projective 
space. Ext groups and sheaves. Serre duality. Higher direct images. Flat mor- 
phisms. Smooth morphisms. Formal schemes, the theorem on formal functions. The 
semicontinuity theorem. Applications to curves and surfaces. 

Prerequisites: MA 55300, 55400, 55700, 56200, 57100, 57200, and 59500AG. 

Text: Course notes will be provided. The notes will largely draw from Algebraic ge- 
ometry by Robin Hartshorne (available at https://doi.org/10.1007/978-1-4757-3849-0 
via the Purdue library). 

Optional texts: All texts listed below have free access options for Purdue students. 
 

• Éléments de géométrie algébrique by Alexander Grothendieck and Jean Dieudonné 
(available at http://www.numdam.org). 

• Eléments de géométrie algébrique I (second edition) by Alexander Grothendieck 
and Jean Dieudonné (available for short term loan at https://n2t.net/ark: 
/13960/t42s6kw4b). 

http://www.numdam.org/
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