1) Solve the system

$$2x + y + z = 5$$
$$x - y + z = 0$$
$$3x - z = 1$$

2) Find a so that a solution exists to the system

$$2x +y = 5
x -y = 1
3x -y = a$$

3) Let

$$A = \begin{bmatrix} 2 & -3 & 2 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

- a) Invert this matrix using elementary row operations.
- b) Invert this matrix using the cofactor expansion.

4) If A is a 3×3 matrix with det(A) = 2

- a) Find $\det(A^{-1})$.
- b) Find $\det(A^T)$.
- c) Find det(5A).

5) True or False

a)
$$\det(A) = \det(P^{-1}AP)$$
.

a)
$$\det(A) = \det(P^{-1}AP)$$
.
b) If $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then $\det(A) = 1$.
c) If $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ then $\det(A) = 0$.

c) If
$$rref(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 then $det(A) = 0$.

6) Using the cofactor expansion, compute

$$\det\begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 2 \end{bmatrix}.$$

- 7) Find the vector which has three times the magnitude of $\vec{u} = (2, -1, 3)$ and points in the oppsite direction of $\vec{v} = (1, -2, 4)$.
- 8) Which of the following functions from \mathbb{R}^3 to \mathbb{R}^2 are linear transformtions.
 - a) L(x, y, z) = (2x + y, 3y z).
 - b) L(x, y, z) = (x + yz, z).
 - c) L(x, y, z) = (x y + z, 2x 1).
 - d) L(x, y, z) = (0, 2x + y 3z).
- 9) If L is the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 obtained by rotating the plane by $\pi/3$ radians and then reflecting across the x-axis, then find the representation of L with respect to the standard basis.
- 10) Find a parametric equation for the line of intersection between the planes x-3y+5z=2 and 2x+y-4z=5.
- 11) Which of the following is a vector space.
 - a) The set of all polynomials $ax^2 + bx + c$ with a = -b (as a subset of P^2).
 - b) The set of all (a, b, c) with ab = c (as a subset of \mathbb{R}^3).
 - c) The null space of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ (as a subset of \mathbb{R}^3).
 - d) The set of all (a, b, c, d) with a + b + c + d = 1 (as a subset of \mathbb{R}^4).
- 12) Is $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ in span $\left\{ \begin{bmatrix} 2\\2\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.

If so, write $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 2\\2\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$.

If not, find the distance from $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ to span $\left\{ \begin{bmatrix} 2\\2\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.

13) Find the dimension of

$$\operatorname{span}\left\{\begin{bmatrix}1\\0\\1\\1\end{bmatrix},\begin{bmatrix}1\\1\\0\\1\end{bmatrix},\begin{bmatrix}1\\1\\1\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\\0\end{bmatrix}\right\}$$

14) Let

$$A = \begin{bmatrix} 1 & 1 & 2 & -1 & 1 \\ -1 & -1 & 0 & -1 & 1 \\ 0 & 0 & 2 & -2 & 2 \\ 1 & 1 & 1 & -1 & 1 \end{bmatrix}$$

- a) Find a basis for the column space of A.
- b) Find a basis for the row space of A.
- c) Find a basis for the null space of A.
- d) Find a basis for the orthogonal complement of the column space of A.
- e) Find a basis for the orthogonal complement of the row space of A.
- f) Find the rank of A.
- g) Find the nullity of A.
- 15) Let $T = \{(2,3), (-2,1)\}$ be a basis of \mathbb{R}^2 and $S\{(1,1), (0,3)\}$ be another basis of \mathbb{R}^2 .
 - a) Find the transition matrix $P_{S\leftarrow T}$ from the basis T to the basis S.
 - b) If $[\vec{v}]_S = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ find $[\vec{v}]_T$ and \vec{v} in the standard basis.
- 16) Use Gramm-Schmidt to find an orthonormal basis for

$$\operatorname{span}\left\{\begin{bmatrix}1\\1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\1\\0\end{bmatrix},\begin{bmatrix}1\\0\\0\\1\end{bmatrix}\right\}$$

- 17) Find an orthonormal basis for the subspace of \mathbb{R}^3 consisting of all (x, y, z) with 2x + y z = 0.
- 18) Let W be the subpace of \mathbb{R}^4 defined by

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix} \right\}.$$

Write the vector $\vec{u} = \vec{w} + \vec{v}$ where \vec{w} is a vector in W and \vec{v} is a vector in W^{\perp} and

$$ec{u} = egin{bmatrix} 1 \ 0 \ 1 \ 0 \end{bmatrix}$$
 .

3

19) Find the distance from (1,1,1) to the plane x+y-z=1.

- 20) If A is a 4×4 matrix whose characteristic polynomial is $\lambda^4 7\lambda^2 + 12$, find a diagonal matrix D which is similar to A.
- 21) Find the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{bmatrix}.$$

Find a matrix P and diagonal matrix D, such that $P^{-1}AP = D$.

22) Find an orthognal matrix P so that $P^{-1}AP$ is diagonal, for

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

23) Find an orthognal matrix P so that $P^{-1}AP$ is diagonal, for

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}.$$

24) Find the least squares approximation solution to the matrix equation

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}.$$

- 25) Find the least squares line which approximates the points (1,1), (2,2), (3,2), (4,3), and (5,4).
- 26) Find the general solution to

$$\frac{d\vec{x}}{dt} = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \vec{x}.$$

27) Find the solution to

$$\frac{d\vec{x}}{dt} = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \vec{x} \quad \text{with } \vec{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

28) Find the general real solution to

$$rac{dec{x}}{dt} = egin{bmatrix} 2 & 2 \ -2 & 2 \end{bmatrix} ec{x}.$$