MATH453M Homework Solutions Week 10

Nick Inglis ninglis@math.purdue.edu

4.2.1 a We certainly have $\phi(1) = 1$. let $r = a + b\sqrt{2}$ and $s = c + d\sqrt{2}$. Then

$$\phi(r+s) = \phi((a+c) + (b+d)\sqrt{2}) = (a+c) - (b+d)\sqrt{2}$$

= $(a-b\sqrt{2}) + (c-d\sqrt{2}) = \phi(r) + \phi(s)$ and
 $\phi(rs) = \phi((ab+2cd) + (ad+bc)\sqrt{2}) = (ab+2cd) - (ad+bc)\sqrt{2}$
= $(a-b\sqrt{2})(c-d\sqrt{2}) = \phi(r)\phi(s).$

4.2.1 b We have $\phi(\sqrt{3})^2 = (\sqrt{7})^2 = 7 \neq 3 = \phi(3)$ so this is not a homomorphism. If f is such an isomorphism then $f(\sqrt{3}) = a + b\sqrt{7}$ for some $a, b \in \mathbb{Q}$. Now f(3) = f(1) + f(1) + f(1) = 1 + 1 + 1 = 3 so we must have $3 = f(\sqrt{5})^2 = (a + b\sqrt{7})^2 = a^2 + 2ab\sqrt{7} + 7b^2$. Therefore ab = 0 since $2ab\sqrt{7} = 3 - a^2 - 7b^2 \in \mathbb{Q}$. Either b = 0 in which case $3 = a^2$ which is impossible since $a \in \mathbb{Q}$, or a = 0 in which case $3 = 7b^2$, which is impossible since $b \in \mathbb{Q}$. Thus there is no such isomorphism.

4.3.1 a Since |w| > |z| we divide w by z:

$$\frac{w}{z} = \frac{(5-15i)(8-6i)}{8^2+6^2} = \frac{-50-150i}{100} = \frac{-1-3i}{2}.$$

We take q = -i since this this is one of the closest Gaussian integers. This gives r/z = w/z - q = (-1 - i)/2 and so r = (-1 - i)(8 + 6i)/2 = -1 - 7i. Now

$$\frac{z}{r} = \frac{8+6i(-1+7i)}{1^2+7^2} = \frac{-50+50i}{50} = -1+i \in \mathbb{Z}[i]$$

so r divides z and hence gcd(z, w) = r = -1 - 7i (of course any associate of r is also the gcd, so -r = 1 + 7i, ir = 7 - i and -ir = -7 + i are equally valid.

4.3.1 b

$$\frac{z}{w} = (4-i)(i-i)1^2 + 1^2 = \frac{3-5i}{2}$$

We take q = 1 - 2i since this is one of the closest Gaussian integers. This gives r/w = z/w - q = (1 - i)/2 so that r = (1 - i)(1 + i)/2 = 1. Therefore gcd(z, w) = 1.

4.3.2 a $6 = 2.3 = (1 + i)(1 - i)3 = -i(1 + i)^23$, where -i is a unit, and 1 + i and 3 are irreducible.

4.3.2 b Let z = 11 + 7i. Then

$$z\overline{z} = 121 + 49 = 170 = 2.5.17 = -i(1+i)^2(2+i)(2-i)(4+i)(4-i),$$

-i is a unit and the rest of the factors on the right are irreducibles. By unique factorisation z must be an associate of (1 + i)ab where $a \in \{2 \pm i\}$ and $b \in \{4 \pm i\}$. Now let w = z/(1 + i) = (11 + 7i)(1 - i)/2 = (18 - 4i)/2 = 9 - 2i so w is an associate of ab with a, b as above. Indeed w or \overline{w} is an associate of (2 + i)(4 + i) or (2 - i)(4 + i). We have (2 + i)(4 + i) = 7 + 6i and (2 - i)(4 + i) = 9 - 2i = w so 11 + 7i = (1 + i)(2 - i)(4 + i).

4.3.11 Let $R = \mathbb{Z}[\omega]$. We want to show that given $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ with |r| < |b| such that a = qb + r. Equivalently, there exists $q \in R$ with $\left|\frac{a}{b} - q\right| < 1$. It is therefore sufficient to show that given any $z \in \mathbb{C}$ we can find $q \in R$ with |z - q| < 1. If we join each element of R to its nearest neighbours in R then this divides \mathbb{C} into equilateral triangles (the nearest elements to 0 are 1, $\omega + 1 = (1 + i\sqrt{3})/2$, ω , -1, $-\omega$ and $1 - \omega$, which form the vertices of a regular hexagon, which comprises 6 equilateral triangles, and this pattern is repeated about every element of R). It follows that every element of \mathbb{C} lies in (or on the border) of such a triangle. But these equilateral triangles have sides of length 1, so every point in the triangle is at distance less than 1 from a vertex.

4.3.13 2.3 = $(1 + i\sqrt{5})(1 - i\sqrt{5})$. All of these elements are irreducible since for each element $|z|^2 \leq 9$, but any non-unit in $w \in \mathbb{Z}[i\sqrt{5}]$ has $|w|^2 \geq 4$ so any composite w has $|w|^2 \geq 16$.

Let $I = \{a + bi\sqrt{5} : a, b \in \mathbb{Z}, a \equiv b \pmod{2}\}$. I claim that I is an ideal (indeed the ideal generated by 2 and $1 + i\sqrt{5}$). Certainly $0 \in I$ and I is closed under addition. Now if $x = a + bi\sqrt{5} \in I$ and $r = c + di\sqrt{5} \in R$ then $xr = (ac - 5bd) + (ad + bc)i\sqrt{5}$ and (ac - 5bd) - (ad + bc) = (a - b)(c - d) - 6bd which is even since a - b is even. Therefore I is an ideal and if $I = \langle g \rangle$ then g divides the irreducible elements 2 and $1 + i\sqrt{5}$. This implies that g is a unit, hence I = R which is nonsense, so I is not a principal ideal.

[In fact any principal ideal domain is a unique factorisation domain.]

4.3.17 For $z = a + bi\sqrt{3} \in \mathbb{Z}[i\sqrt{3}]$ we have $|z|^2 = a^2 + 3b^2 \in \mathbb{N}_0$ and |wz| = |w||z|, so any unit must have $1 = |z|^2 = a^2 + 3b^2$ hence b = 0 and $a^2 = 1$. Hence the only units are ± 1 .

For $r = a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ let $r^* = a - b\sqrt{2}$. It is easy to check that $r \mapsto r^*$ is an automorphism of R (an isomorphism from R to itself). Let $N(r) = rr^* = (a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2 \in \mathbb{Z}$ so that $N(r) \iff r = 0$. Then N(rs) = N(r)N(s) so if r is a unit then N(r) must be a unit in \mathbb{Z} , in other words $N(r) = \pm 1$. Conversely, if $N(r) = \pm 1$ then $1 = \pm N(r) = r(\pm r^*)$ so r is a unit. Therefore the units of $\mathbb{Z}[\sqrt{2}[$ are the elements $a + b\sqrt{2}]$ with $a^2 - 2b^2 = \pm 1$.

[In fact there are infinitely many such elements, but each is of the form $\pm (1 + \sqrt{2})^n$ for some $n \in \mathbb{Z}$.]