MATH453M Homework Solutions Week2

Nick Inglis ninglis@math.purdue.edu

1.3.5 The residue classes mod 3 are $0, \pm 1$ with $0^2 \equiv 0 \pmod{3}$ and $(\pm 1)^2 \equiv 1 \pmod{3}$. The residue classes mod 5 are $0, \pm 1, \pm 2$ with $0^2 \equiv 0 \pmod{5}$, $(\pm 1)^2 \equiv 1 \pmod{5}$ and $(\pm 2)^2 \equiv 4 \pmod{5}$.

1.3.8 $3^4 = 81 \equiv 1 \pmod{10}$ so $3^{400} = (3^4)^{100} \equiv 1 \pmod{10}$ so the last digit of 3^{400} is 1. To determine the last 2 digits we work mod 100, and start by working mod 4 and mod 25. Now $3^2 = 9 \equiv 1 \pmod{4}$ also $3^4 \equiv 6 \pmod{25}$ so $3^8 \equiv 36 \equiv 11 \pmod{25}$, $3^{12} \equiv 66 \equiv -9 \pmod{25}$, $3^{16} \equiv -54 \equiv -4 \pmod{25}$ and $3^{20} \equiv -24 \equiv 1 \pmod{25}$. We have $3^{20} \equiv 1 \pmod{4}$ and $3^{20} \equiv 1 \pmod{25}$ so, by the Chinese Remainder Theorem, $3^{20} \equiv 1 \pmod{100}$. Therefore $3^{400} = (3^{20})^{20} \equiv 1 \pmod{100}$ so the last two digits of 3^{400} are 01.

Now $7^4 = 2401 \equiv 1 \pmod{10}$ so $7^{96} = (7^4)^{24} \equiv 1 \pmod{10}$. Therefore $7^{99} \equiv 7^3 = 343 \equiv 3 \pmod{10}$ so the last digit is of 7^{99} is 3.

1.3.16 p is prime and $p \neq 3$ so $p \equiv \pm 1 \pmod{3}$. Therefore $p^2 \equiv 1 \pmod{3}$ and so $p^2 + 2 \equiv 3 \equiv 0 \pmod{3}$. Thus 3 divides $p^2 + 2$ and $p^2 + 2 > 3$ so $p^2 + 2$ is composite.

1.3.20 c $243x + 17 \equiv 101 \pmod{725} \iff 243x \equiv 84 \pmod{725}$. Now

725 = 2.243 + 239	1 = 4 - 3 = 4 - (239 - 59.4)
243 = 1.239 + 4	= 60.4 - 239 = 60(243 - 239) - 239
239 = 59.4 + 3	= 60.243 - 61.239 = 60.243 - 61(725 - 2.243)
4 = 1.3 + 1	= 182.243 - 61.725

Thus gcd(725, 243) = 1 and $182.243 \equiv 1 \pmod{725}$ so $x \equiv 182.84 = 15288 \equiv 63 \pmod{725}$.

1.3.20 g Now gcd(35, 15) = 5 and 5 divides 25 so $15x \equiv 25 \pmod{35} \iff 3x \equiv 5 \pmod{7}$. We have 7 = 2.3+1 so that $(-2).3 \equiv 1 \pmod{7}$. Therefore $x \equiv (-2)5 \equiv -10 \equiv -3 \pmod{7}$.

1.3.20 h Again gcd(35, 15) = 5 but 5 does not divide 24 so there is no solution.

1.3.21 c We want to solve $x \equiv b_i \pmod{m_i}$ with $(b_1, m_1) = (3, 4), (b_2, m_2) = (4, 5)$ and $(b_3, m_3) = (3, 7)$. Let N = 4.5.7 = 140 and let $n_i = N/m_i$. If we solve $n_i x_i \equiv b_i \pmod{m_i}$ then $x \equiv n_1 x_1 + n_2 x_2 + n_3 x_3 \pmod{N}$. Now $n_1 = 35 \equiv 3 \pmod{4}$ so $3x_1 \equiv n_1 x_1 \equiv 3 \pmod{4} \iff x_1 \equiv 1 \pmod{4}$.

And $n_2 = 28 \equiv -2 \pmod{5}$ so $(-2)x_2 \equiv n_2x_2 \equiv 4 \pmod{5} \iff x_2 \equiv -2 \pmod{5}$. Finally $n_3 = 20 \equiv -1 \pmod{7}$ so $-x_3 \equiv n_3x_3 \equiv 3 \pmod{7} \iff x_3 \equiv -3 \pmod{7}$. Therefore $x \equiv 35.1 + 28(-2) + 20(-3) = -81 \equiv 59 \pmod{140}$.

1.3.21 d Using the Chinese Remainder Theorem and 140 = 4.5.7 we have $19x \equiv 1 \pmod{140}$ if and only $19x \equiv 1 \pmod{m_i}$ for $m_i = 4$, 5 and 7. Now $19 \equiv -1 \pmod{4}$ so $-x \equiv 19x \equiv 1 \pmod{4} \iff x \equiv -1 \equiv 3 \pmod{4}$. Similarly $19 \equiv -1 \pmod{5}$ so $-x \equiv 19x \equiv 1 \pmod{5} \iff x \equiv -1 \equiv 4 \pmod{5}$. Finally $19 \equiv -2 \pmod{7}$ has multiplicative inverse 3 (mod 7) so $-2x \equiv 19x \equiv 1 \pmod{7} \iff x \equiv 3 \pmod{7}$. Thus this problem is the same as 1.3.21 c and again has solution $x \equiv 59 \pmod{140}$.

Note that a quicker solution would be to apply Euclid's algorithm directly.

1.3.21 f We use Theorem 3.8. Here we have $x \equiv b_i \pmod{m_i}$ with $(b_1, m_1) = (4, 105)$ and $(b_2, m_2) = (29, 80)$. Now

$$105 = 1.80 + 25$$
 $5 = 80 - 3.25 = 80 - 3(105 - 80)$ $80 = 3.25 + 5$ $= 4.80 - 3.105$ $25 = 5.5$ $= a_1m_1 + a_2m_2$

with $a_1 = -3$ and $a_2 = 4$. Thus $d = \gcd(105, 80) = 5$ and $b_1 - b_2 = 5 - 29 = -25 = (-5)5 = cd$ with c = -5 so there is a solution and the general form is

$$x \equiv ca_2m_2 + b_2 \pmod{m_1m_2/d} \equiv (-5)4.80 + 29 \equiv -1600 + 29 \equiv 109 \pmod{1680}$$

1.3.28 What are the possible residue classes mod 6 for a prime p > 3? Not $0, \pm 2$ since p is odd and not 3 since 3 does not divide p, so $p \equiv \pm 1 \pmod{6}$. Suppose that there are only finitely many primes p_1, p_2, \ldots, p_k congruent to $-1 \mod 6$. Let $N = 6p_1p_2 \ldots p_k - 1$. Then $N \equiv -1 \pmod{6}$ so 2 and 3 do not divide N. Also $N \equiv -1 \pmod{p_i}$ so p_i does not divide N for $1 \leq i \leq k$. Therefore N must be a product of other primes, each of which is congruent to 1 mod 6. Hence $N \equiv 1 \pmod{6}$ which contradicts the definition of N. Therefore there are infinitely many primes congruent to $-1 \mod 6$.

1.3.29 a We have

$$(x+y)^p = x^p + \sum_{k=1}^{p-1} {p \choose k} x^{p-k} y^k + y^p \equiv x^p + y^p \pmod{p}$$

since p divides $\binom{p}{k}$ for $1 \leq k < p$.

1.3.29 b Let $q = p^n$. We use induction on n. The result is true for n = 1 by part a, so suppose that n > 1 and that the result is true for smaller values of n. Then

$$(x+y)^{p^n} = \left((x+y)^{p^{n-1}} \right)^p \equiv \left(x^{p^{n-1}} + y^{p^{n-1}} \right)^p \pmod{p} \quad \text{since true for } n-1$$
$$\equiv \left(x^{p^{n-1}} \right)^p + \left(y^{p^{n-1}} \right)^p = x^{p^n} + y^{p^n} \pmod{p}$$