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1.42a InZ;,5 =(-2)'=3and3 '=-2s035 +43  =33+4(-2)=9-8=1.
1.4.2b  Modulo 11, 72+824+92+10% = (—4)2+(=3)?+(—2)2+(—-1)? = 42 +32+22+1? =
16494441 =30 =8 (mod 11) so the denominator and numerator have the same non-zero

value, so the value of the quotient is 1.

1.4.2 ¢ By 1.1.4 ¢ we have
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where n = (p — 1)/2. Now 2n + 1 = p so the numerator is 0, but p > 5 so the denominator
is 6 # 0 and hence the quotient is 0.

1.4.4 Foramatrix A= (2Y)if welet A= (4 7?) and det A = ad—bc then AA = det(A)I.
It follows that A is a zero-divisor if det A =0 and A # 0. If det A # 0 then A has inverse
A7" = (det A)7'A in My(Q), so A is not a zero-divisor. If det A = +1 the A™' € My(Z) and
A is a unit.

a detA=1s0o Aisaunit. b detA = —1so Ais aunit. ¢ detA = 3 so A is neither
a unit nor a zero-divisor. d detA = 0 so A is a zero-divisor. e detA = 0so A is a

zero-divisor.

1.4.5 a ged(a,m) =1 <= there exist z,y € Z with ax +my =1 <= there exists
x € Z with ax =1 (mod m) <= there exists T € Z,, with at =1 <= @ is a unit.

1.4.5 b If @ is a zero-divisor then it is not a unit (see (d)) so ged(a,m) # 1 by (a). If
d = ged(a,m) > 1 and m 1 a then m = cd with ¢,d > 1 and d divides a so m = cd divides
ac and hence a¢ = 0. But @,¢ # 0 so @ is a zero-divisor.

1.4.5 ¢ If @ # 0 then m { a and either ged(a, m) = 1 in which case @ is a unit by (a), or
ged(a,m) > 1 and @ is a zero-divisor by (b).

1.4.5 d Suppose that a is a unit and ab = 0. Then b = (a7 'a)b = a='(ab) = a='0 = 0,
so a is not a zero-divisor. (c) is false for the ring Z, where 2 is neither a zero-divisor, nor a
unit.

14.6a 0.a=0.a+0=0.a+(l.a—1l.a)=(0.a+1.a)—l.a=(0+1).a—l.a=1l.a—1l.a=0.



146 b (-la = (-a+0 = (-1
(-1+1).a+(—a)=0.a+ (—a) =0+ (—a

I.Il.bﬁ_c b Similarly to (b) we have a(—1) = —a so (—a)(—b) = [a(=1)][(—=1)b] = a(—1)?b =

1.4.6 d Suppose that e.a = a for all a € R. Then e =e.1 = 1.

N e

1.4.7 O=cx—cy=c(xr—y),but c#0sox—y=0,hence z =y.
1.49 Letz=a+bv/2and y=c+dv2 Then v +y=(a+c)+ (b+d)Vv2€ R and

2y = ac + adV2 + bev/2 4+ bd(V2)? = (ac + 2bd) + (ad + be)V2 € R.

Therefore the addition and multiplication are defined on R. The associativity and
commutativity of + and . and the distributive law are all inherited from the real numbers
since R C R. Also 0 = 0+0v2 € Rand 1 = 1+0v/2 € R so R has additive and multiplicative
identities. Finally, if = a + bv/2 € R then —2 = (—a) + (—=b)v/2 € R so there are additive
inverses in K. Thus R is a commutative ring.

For # = a+bv2 € R we define 2* = a—bv/2 € Rand N(z) = x2* = (a+bv/2)(a—bV2) =
a? — 2b* € Z. Now for =,y € R, we have (zy)* = z*y* and N(zy) = N(z)N(y). It follows
that if = is a unit in R, then N(z) is a unit in Z, so N(z) = £1. But if N(z) = £1 then =
has inverse +2* € R. Thus x = a + by/2 is a unit if and only if a?> — 26> = +1. [In fact there
are infinitely many such units.]

1.4.12 Given a # 0 we let S = {ab : b € R}. Now for b # ¢ we have ab # ac (from
question 7) so |S| = |R|. But S C R so we must have S = R and hence 1 € S. Therefore
there is some b € R with ab = 1.

1.4.13 For a € Z, with @ # 0 there is an inverse @ ' withaa ' =1. Nowa=a ! <
a*=1<+= (@-1)(@a+1)=a—-1=0 < a=1ora= —1. Therefore the non-zero
elements of Z, come in {@,a '} pairs except for T and —1. The pairs contribute 1 to the
product (p—1)! = [[;,5@ so the product reduces to (p—1)! = 1(~1) = —1 and hence
(p—1)!=—1 (mod p).




