MATH453M Homework Solutions Week4

Nick Inglis ninglis@math.purdue.edu

2.1.3 a False: if a = 1 = c and b = -2 = d then ac = 1 < 4 = bd. But the result is true if a > b > 0 and c > d > 0 since then a > b and c > 0 imply ac > bc, and c > d and b > 0 imply bc > bd hence ac > bd.

2.1.3 b True. If a = b then ac = bc and if a < b then c > 0 implies ac < bc. Therefore we must have a > b.

2.1.5 a $r^2 + s^2 - 2rs = (r - s)^2 \ge 0$ with equality when r = s.

2.1.5 b $r^2 + 2rs + 3s^2 = (r+s)^2 + 2s^2 \ge 0$ with equality when r+s = s = 0, in other words, when r = s = 0.

2.1.5 c $4(r^2 + rs + s^2) = (2r + s)^2 + 3s^2 \ge 0$ with equality when 2r + s = s = 0, in other words, when r = s = 0.

2.1.8 False. In \mathbb{Z}_5 we have $\overline{1}^2 + \overline{2}^2 = \overline{5} = \overline{0}$.

2.1.10 Yes. Between rational numbers r and s we have the rational number (r+ms)/(1+m) for any $m \in \mathbb{N}$.

2.1.16 The only such function is the identity map f(x) = x. Proof: First we note that 1 = f(1) = f(1+0) = f(1) + f(0) = 1 + f(0) so f(0) = 0. Therefore 0 = f(x + (-x)) = f(x) + f(-x) so f(-x) = -f(x) for any $x \in \mathbb{Q}$. Now an induction proof shows that f(nx) = nf(x) for any $n \in \mathbb{N}$ and $x \in \mathbb{Q}$ (true for n = 1 and if true for n - 1 then f(nx) = f((n-1)x) + f(x) = (n-1)f(x) + f(x) = nf(x)). We therefore have f(n) = n for all $n \in \mathbb{Z}$. Finally if x = m/n with $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ then nf(x) = f(nx) = f(m) = m so f(x) = m/n = x.

2.2.3 Let a = (x + y)/2 and $b = \sqrt{xy}$ so $a, b \in \mathbb{R}^+$. Now

$$4(a^{2} - b^{2}) = 4\left[\left(\frac{x+y}{2}\right)^{2} - (\sqrt{xy})^{2}\right] = x^{2} + 2xy + y^{2} - 4xy = x^{2} - 2xy + y^{2} = (x-y)^{2} \ge 0$$

so $(a-b)(a+b) = a^2 - b^2 \ge 0$. But a+b > 0 so $a-b \ge 0$, hence $a \ge b$.

2.2.5 No. For example $\sqrt{2}$ and $-\sqrt{2}$ are both irrational, bur $\sqrt{2} + (-\sqrt{2}) = 0 \in \mathbb{Q}$ and $\sqrt{2}(-\sqrt{2}) = -4 \in \mathbb{Q}$.

2.2.6 a Suppose that $\sqrt{3} \in \mathbb{Q}$. Then $\sqrt{3} = \frac{a}{b}$ where $a, b \in \mathbb{N}$ and gcd(a, b) = 1. Now $3 = a^2/b^2$ so $3b^2 = a^2$ and hence $3 \mid a$, say a = 3c with $c \in \mathbb{N}$. Therefore $3b^2 = 9c^2$ so $b^2 = 3c^2$, hence $3 \mid b$, which contradicts gcd(a, b) = 1. Therefore $\sqrt{3} \notin \mathbb{Q}$.

2.2.6 b Suppose that $\sqrt[3]{2} \in \mathbb{Q}$. Then $\sqrt[3]{2} = \frac{a}{b}$ where $a, b \in \mathbb{N}$ and gcd(a, b) = 1. Now $2 = a^3/b^3$ so $2b^3 = a^3$ and hence a is even, say a = 2c with $c \in \mathbb{N}$. Therefore $2b^3 = 8c^3$ so $b^3 = 4c^3$, hence b is even, which contradicts gcd(a, b) = 1. Therefore $\sqrt[3]{2} \notin \mathbb{Q}$.

2.2.6 c Suppose that $x = \log_{10} 3 \in \mathbb{Q}$, so $10^x = 3$. Then $x = \frac{a}{b}$ where $a, b \in \mathbb{N}$ and gcd(a, b) = 1. Now $10^{a/b} = 3$ so $10^a = 3^b$, but this is impossible, since 10^a is even and 3^b is odd. Therefore $\log_{10} 3 \notin \mathbb{Q}$.