MATH453M Homework Solutions Week 8

Nick Inglis ninglis@math.purdue.edu

3.3.2 a This is irreducible. Either note that it has no root in \mathbb{Q} (the only possible roots are ± 1 and ± 5), or observe that modulo $f(x) \equiv x^3 + x + 1 \pmod{2}$, which is irreducible over \mathbb{Z}_2 .

3.3.2 b Now $3 \nmid 4, 3 \mid \pm 6, 3 \mid 12$ and $9 \nmid -12$ so f(x) is irreducible by Eisenstein's Criterion with p = 3.

3.3.2 c This time $f(x) = (x + 1)(x^2 + 1)$ is not irreducible.

3.3.3 a Possible rational roots are of the form x = p/q with $p \in \{\pm 1, \pm 2\}$ and $q \in \{1,3\}$ so $x \in \{\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}\}$. Only -2/3 is actually a root of f(x). Indeed $f(x) = (3x+2)(x^2+x+1)$, where the last factor has no real roots.

3.3.3 b Possible rational roots have denominator dividing 2 and numerator 1, so the candidates are $\pm 1, \pm 2$. Of these only 2 is a root of f(x). Indeed $f(x) = (x - 2)(x^4 + x^3 + x^2 + x + 1)$, where the last factor has no real roots.

3.3.4 a The only possible rational roots are ± 1 , but f(1) = 1 - 1 + 4 + 1 = 5 and f(-1) = 1 + 1 - 4 + 1 = -1.

3.3.4 b If f(a) = 0 then $(a^4)^2 = a^8 = 54$ so $a^4 = \pm 3\sqrt{6} \notin \mathbb{Q}$, hence $a \notin \mathbb{Q}$.

3.3.6 a Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. By the Remainder Theorem, x + 1 divides f(x) if and only if $0 = f(1) = a_n + a_{n-1} + \cdots + a_1 + a_0$. Any non-zero coefficients are 1 in \mathbb{Z}_2 , so this holds if and only if the number of non-zero coefficients is even.

3.3.6 b An irreducible polynomial of degree n will be monic with $0 \neq f(0) = a_1$, so by (a) it will be of the form $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + 1$, where an odd number of $a_1, a_2, \ldots, a_{n-1}$ are non-zero. For $n \leq 3$ any such polynomial is irreducible, so the only irreducible polynomial of degree 2 is $x^2 + x + 1$ and the only two of degree 3 are $x^3 + x + 1$ and $x^3 + x^2 + 1$. For n = 4, such a polynomial is irreducible as long as it is not a product of two quadratic irreducibles. therefore $x^4 + x^2 + 1 = (x^2 + x + 1)^2$ is not irreducible, but $x^4 + x + 1$, $x^4 + x^3 + 1$ and $x^4 + x^3 + x^2 + x + 1$ are irreducible. For n = 5 we need to avoid products of $x^2 + x + 1$ and a cubic irreducible. This eliminates $x^5 + x^4 + 1 = (x^2 + x + 1)(x^3 + x + 1)$ and $x^5 + x + 1 = (x^2 + x + 1)(x^3 + x^2 + 1)$. Therefore the irreducibles of degree 5 are

$$x^5 + x^2 + 1, x^5 + x^3 + 1, x^5 + x^3 + x^2 + x + 1, x^5 + x^4 + x^2 + x + 1, x^5 + x^4 + x^3 + x + 1$$
 and $x^5 + x^4 + x^3 + x^2 + 1$.

3.3.7 Let y = x - 1 so that x = y = 1. Now $f(x) = (x^p - 1)/(x - 1)$ so

$$f(y+1) = \frac{(y+1)^p - 1}{y} = \frac{y^p + \binom{p}{p-1}y^{p-1} + \dots + \binom{p}{1}y + 1 - 1}{y}$$
$$= y^{p-1} + py^{p-1} + \dots + \frac{p(p-1)}{2}y + p.$$

The coefficient of y^i is $\binom{p}{i+1}$ for $0 \leq i < p-1$ and each of these is divisible by p. But the constant coefficient is not divisible by p, so f(x) = f(y+1) is irreducible by Eisenstein's Criterion.

3.3.8 a Let $f(x) = x^p - x$. By Fermat's Little Theorem, $f(n) \equiv 0 \pmod{p}$ for all $n \in \mathbb{Z}$, so every element of \mathbb{Z}_p is a root of f(x).

3.3.8 b Let $g(x) = x^{p-1} - 1 = (x^p - x)/x$ so the non-zero elements of \mathbb{Z}_p are the roots of g(x) and hence the result follows.

3.3.8 c Putting x = p in (b) we see that

$$(p-1)! = (p-1)(p-2)\dots(p-(p-1)) \equiv g(p) = p^{p-1} - 1 \equiv -1 \pmod{p}.$$