1. Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$. Find all real numbers a

A.
$$a \neq 0$$

such that
$$B^{\top}A = (AB)^{\top}$$
.

B.
$$a = \pm 1$$

C.
$$a = 1$$

D.
$$a = -1$$

E. a = 0

A.
$$a = 1$$

B.
$$a = \pm 2$$

C.
$$a = 2$$

D.
$$a = -2$$

E.
$$a = \pm 4$$

3. If
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$
, then A^{-1} has the form

$$A^{-1} = \begin{bmatrix} a & 1 & -1 \\ 1 & b & 0 \\ 0 & 1 & c \end{bmatrix}.$$

Find the sum a + b + c.

E.
$$-2$$

4. Suppose that **u** and **v** are unit vectors such that
$$(\mathbf{u}, \mathbf{v}) = -1/2$$
. Find $|3\mathbf{u} + \mathbf{v}|$.

B.
$$\sqrt{3}$$

C.
$$\sqrt{5}$$

D.
$$\sqrt{7}$$

- **5.** Let A be a 5×8 matrix. Which of the following statements are true.
 - (1) The nullity of A cannot equal to 5.
 - (2) The rank of A cannot equal 3.
 - (3) If the nullity of A is 4 then the nullity of A^{\top} is 1.
 - (4) If the rank of A is 3, then the nullity of A is 2.

- A. (1) and (2).
- B. (3) and (4).
- C. (3) only.
- D. (4) only.
- E. None are true.

6. Find a basis for the subspace W of R^3 consisting all vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ such that 2x + 3x = 0

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 such that $2x + y - z = 0$.

A.
$$\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix}$

B.
$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$

C.
$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$

D.
$$\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

E.
$$\begin{bmatrix} 1\\1\\3 \end{bmatrix}$$
, $\begin{bmatrix} -1\\0\\-2 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$

7. Suppose that the Gram-Schmidt process is applied to a certain set of vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 in R^4 to obtain an orthonormal set of vectors \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 . The first two turn out to be

$$\mathbf{w}_1 = (1/\sqrt{2}, -1/\sqrt{2}, 0, 0), \quad \mathbf{w}_2 = (1/2, 1/2, 1/2, 1/2).$$

Given that $\mathbf{v}_3 = (1, 0, 1, -1)$, find \mathbf{w}_3 .

A.
$$\mathbf{w}_3 = \frac{1}{2}(1, 1, -1, -1)$$

B.
$$\mathbf{w}_3 = \frac{1}{6}(1, 1, 3, -5)$$

C.
$$\mathbf{w}_3 = \frac{1}{\sqrt{18}}(2, 2, -3, -1)$$

D.
$$\mathbf{w}_3 = \frac{1}{\sqrt{22}}(1, 1, 2, -4)$$

E.
$$\mathbf{w}_3 = \frac{1}{\sqrt{24}}(2, 2, 0, -4)$$

- **8.** Which of the given subsets are **NOT** subspaces of R^3 .
 - (1) The set of all vectors of the form (a, 0, c).
 - (2) The set of all vectors (a, b, c) such that a b + c = 0 and a + 2c = 0.
 - (3) The set of all vectors of the form (a, 1 a c, c).
 - (4) The set all vectors \mathbf{v} such that $\mathbf{v} \cdot \mathbf{a} = \mathbf{v} \cdot \mathbf{b}$, where $\mathbf{a} = (1, 1, 1)$ and $\mathbf{b} = (1, -1, 1)$.
 - (5) The set of all linear combinations of the vectors (1,1,0) and (1,2,1).
 - (6) The set all vectors perpendicular to the vector (1, 1, 1).

- A. (3) only.
- B. (3) and (4).
- C. (4) and (6)
- D. (1), (2), and (4)
- E. All are subspaces.

- **9.** Let A be a 3×4 matrix such that rank(A) = 3. Which of the following statements are true.
 - (1) $A\mathbf{x} = \mathbf{b}$ always has a solution
 - (2) The rows of A are linearly independent.
 - (3) The columns of A span \mathbb{R}^3 .
 - (4) $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
 - (5) The dimension of the orthogonal complement of the row space of A is 1.

- A. (2) and (3) only.
- B. (2), (3), (4) and (5) only.
- C. (1) only.
- D. (1), (2), (4) and (5) only.
- E. All are true.

10. Find a basis for the nullspace of A, given that

$$A = \begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 3 & 6 & -4 & -9 \\ 1 & 2 & 1 & -3 & -1 \\ 2 & 3 & 0 & -3 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -3 & 0 & 5 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \operatorname{rref}(A).$$

A.
$$\begin{bmatrix} 5 \\ 6 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -7 \\ -9 \\ -1 \\ 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} 4\\3\\2\\3 \end{bmatrix}, \begin{bmatrix} 9\\4\\3\\3 \end{bmatrix}$$

$$C. \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ 3 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} -3 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 5 \\ -3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

E.
$$\begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -5 \\ 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

11. Let
$$W$$
 be the subspace of R^4 spanned by $Y_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $Y_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. A. $\begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}$

Find the orthogonal projection of $X = \begin{bmatrix} 3 \\ -1 \\ -1 \\ 3 \end{bmatrix}$ onto W .

B. $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

A.
$$\begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

Find the orthogonal projection of
$$X = \begin{bmatrix} 3 \\ -1 \\ -1 \\ 3 \end{bmatrix}$$
 onto W .

B.
$$\begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

E.
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & -3 & 4 \\ -4 & 2 & 1 & 3 \\ 3 & 0 & 0 & -3 \\ 2 & 0 & -2 & 3 \end{bmatrix}.$$

13. Given that
$$\det \begin{bmatrix} a & b & c \\ x & y & z \\ 1 & 1 & 1 \end{bmatrix} = 4$$
, find

$$\det \begin{bmatrix} x & y & z \\ (x-2a) & (y-2b) & (z-2c) \\ 3 & 3 & 3 \end{bmatrix}.$$

B.
$$-24$$

D.
$$-12$$

14. For what values of
$$a$$
 is the matrix A singular (not invertible).

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ a-1 & 2 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 1 \\ 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 3 & 0 \end{bmatrix}$$

A.
$$a = -3, 1$$

B.
$$a = -1, 0$$

C.
$$a = 0, 1$$

D.
$$a = 0, 3$$

E.
$$a = 1, 3$$

15. The matrix
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$
 has eigenvalues 2 and 3. An

eigenvector corresponding to
$$2$$
 is:

A.
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1\\2 \end{bmatrix}$$

D.
$$\begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

E.
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

16. Which of the following matrices is diagonalizable.

$$(1) \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(2) \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix}
1 \\
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
2 \\
1 \\
3 \\
0
\end{pmatrix}
\begin{pmatrix}
2 \\
1 \\
3 \\
0
\end{pmatrix}
\begin{pmatrix}
3 \\
1 \\
3 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
3 \\
1 \\
3 \\
1
\end{pmatrix}$$

- A. All of them.
- None of them.
- (3) only. С.
- D. (1) and (3) only.
- E. (2) and (3) only.

17. Find the particular solution to the differential equation

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \text{where} \quad A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix},$$

such that $x_1(0) = 3$ and $x_2(0) = -1$. The eigenvalues of A are 1 and 5 with corresponding eigenvectors $P_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $P_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

A.
$$\begin{bmatrix} 2e^t + e^{5t} \\ -2e^t + e^{5t} \end{bmatrix}$$

B.
$$\begin{bmatrix} 2e^t + e^{5t} \\ 2e^t - 3e^{5t} \end{bmatrix}$$

C.
$$\begin{bmatrix} e^t + 2e^{5t} \\ e^t - 2e^{5t} \end{bmatrix}$$

D.
$$\left[\begin{array}{c} e^t + 2e^{5t} \\ 2e^t - 3e^{5t} \end{array} \right]$$

$$E. \begin{bmatrix} 4e^t - e^{5t} \\ -4e^t + 3e^{5t} \end{bmatrix}$$

18. Find all values of a such that $\begin{bmatrix} 1 \\ 0 \\ a \end{bmatrix}$ is an eigenvector for the matrix

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

A.
$$a = 2, a = 0$$

B.
$$a = 1$$

C.
$$a = 1, a = -1$$

D.
$$a = 2, a = -3$$

$$E. \quad a = 2$$

19. A 3×3 matrix A has eigenvalues $\lambda = 1, 2$ and the eigenspace of $\lambda = 1$ is spanned by

A.
$$\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$P_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

B. $\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$

Given that A is symmetric, find an eigenvector for $\lambda = 2$.

C. $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$

D.
$$\begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$

E.
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

20. Determine the least squares solution to $A\mathbf{x} = \mathbf{b}$, where

A.
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

B.
$$\begin{bmatrix} 1/4 \\ 1/4 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1/3 \\ 1/3 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

E.
$$\begin{bmatrix} 2/3 \\ 2/3 \end{bmatrix}$$

21. Find x given that

C. 0

$$\det \begin{bmatrix} 2 & a & 3 \\ 5 & b & -1 \\ 1 & c & 1 \end{bmatrix} \neq 0.$$

E. 2b - 5a

22. Let A be a
$$6 \times 3$$
 matrix whose null space is spanned by

$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}$$

What is the rank of A.

23. Let A be a
$$3 \times 1$$
 matrix, B a 2×3 matrix and C a 2×1 matrix.

B.
$$B^{\top}C$$

C.
$$C^{\top}BA$$

A. -b + 17c - 6a

D. 1

A. 1

B. 2

C. 3

D. 4

E. 5

A. AB

B. 5/(-b + 17c - 6a)

$$D. BAC^{\top}$$

E.
$$(BA)^{\top}$$

24. For what value of
$$k$$
 is the vector $\mathbf{w} = (1, 6, k)$ in the subspace spanned by the vectors

Which of the following is defined and is a 1×2 matrix.

$$\mathbf{w}_1 = (1, 2, 3), \quad \mathbf{w}_2 = (1, -2, 3), \quad \mathbf{w}_3 = (4, 4, 12).$$

25. Find the dimension of the subspace of M_{22} consisting of matrices

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

B. 1

A. 0

such that

C. 2D. 3

E. 4

26. Let A be a nonsingular $n \times n$ matrix. Which statement is false.

A. 0 is an eigenvalue of A.

B. $det(A) \neq 0$.

C. The rank of A is n.

D. A^{\top} is nonsingular.

E. A^2 is nonsingular.

27. Let V be an inner product space, and let \mathbf{u} and \mathbf{v} be unit vectors such that $(\mathbf{u}, \mathbf{v}) = 0$. Find $(3\mathbf{u} - 4\mathbf{v}, \mathbf{u} + 5\mathbf{v})$.

A. 17

B. -17

C. 3

D. 20

E. -60

28. Let a be a real number such that $a \neq -1, 0, 1$ and let

$$A = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix}.$$

Which of the following vectors is an eigenvalue for A.

- A. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- B. $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- C. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- D. $\begin{bmatrix} 1 \\ a \end{bmatrix}$
- E. $\begin{bmatrix} a \\ 1 \end{bmatrix}$

29. Which of the following transformations from \mathbb{R}^3 to \mathbb{R}^2 is **not** linear.

A.
$$L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

B.
$$L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x \\ 0 \end{bmatrix}$$

C.
$$L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xy \\ x+y \end{bmatrix}$$

D.
$$L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2y \\ x+y \end{bmatrix}$$

E.
$$L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ x \end{bmatrix}$$

30. Let $A = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$. Then A^5 is equal to

- A. *I*
- B. A^2
- C. $-A^2$
- $\mathbf{D.} \ \ A$
- E. -A
- **31.** Suppose that A and B are 3×3 matrices such that $\det(A) = 9$ and $B^2 = A$. Find the value of $\det(2AB^{\top}A^{-1}B)$.
- A. 18
- B. 72
- C. 2
- D. 8
- E. 162
- **32.** For what value of t does the system with the following augmented matrix have no solution.

 $\begin{bmatrix} 0 & t-7 & 0 & | & 6 \\ 0 & 2 & 2t-2 & | & -2 \\ 1 & -1 & -2 & | & 1 \end{bmatrix}$

- B. 7
- C. 9
- D. -1
- E. -9
- **33.** For what value of t does the system with the following augmented matrix have an infinite number of solutions.

- B. 7
- C. 9
- D. -1
- E. -9

34. Let W be the subspace of R^3 spanned by (1,0,2) and (0,1,0). Let $\mathbf{v} = (1,2,3)$, and let \mathbf{v}' , \mathbf{v}'' be such that $\mathbf{v} = \mathbf{v}' + \mathbf{v}''$, where \mathbf{v}' is in W and \mathbf{v}'' is in W^{\perp} . Find the vector \mathbf{v}' .

A.
$$\mathbf{v}' = \frac{1}{5}(7, 10, 14)$$

B.
$$\mathbf{v}' = (3, 1, 4)$$

C.
$$\mathbf{v}' = \frac{1}{5}(3, 10, -6)$$

D.
$$\mathbf{v}' = \frac{1}{3}(3, 1, 9)$$

E.
$$\mathbf{v}' = \frac{1}{5}(3, 10, 4)$$

35. Suppose that the system of equations

has a solution. Which equation must a, b, and c satisfy.

$$A. \quad a+b+c=0$$

B.
$$a + 2b - 3c = 0$$

C.
$$3a + b - c = 0$$

D.
$$3a - 2b + c = 0$$

$$E. \quad a - b + 3c = 0$$

36. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that

$$L\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}2\\-1\\1\end{bmatrix}, \quad L\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\3\\2\end{bmatrix}, \quad L\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\4\\2\end{bmatrix}.$$

Find
$$L\left(\begin{bmatrix} 1\\-1\\1 \end{bmatrix}\right)$$
.

A.
$$\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 4 \\ 6 \\ 3 \end{bmatrix}$$

D.
$$\begin{bmatrix} -2\\2\\1 \end{bmatrix}$$

E.
$$\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

37. Let
$$A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$
. If $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, find $a + d$.

A.
$$-3/2$$

B.
$$-2$$

D.
$$7/2$$

A. k = 2

38. Find all value(s) of k such that the vectors

$$(1,3,k,1), (1,1,0,-1), (0,1,1,1)$$

B.
$$k = -1, 3$$

are linearly dependent.

C.
$$k \neq 1$$

D.
$$k \neq 2$$

$$E. \quad k = 3$$

39. Find the matrix B such that $adj(B) = \begin{bmatrix} 2 & 4 \\ -5 & 7 \end{bmatrix}$.

- A. $\begin{bmatrix} 7 & -4 \\ 5 & 2 \end{bmatrix}$
- B. $\begin{bmatrix} 2 & 4 \\ -5 & 7 \end{bmatrix}$
- C. $\begin{bmatrix} 2 & -5 \\ 4 & 7 \end{bmatrix}$
- D. $\begin{bmatrix} 7 & -5 \\ 2 & 4 \end{bmatrix}$
- E. $\begin{bmatrix} -5 & 7 \\ 2 & 4 \end{bmatrix}$

40. Find a diagonal matrix similar to $A = \begin{bmatrix} 4 & 1 \\ -3 & 8 \end{bmatrix}$.

- A. $\begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}$
- B. $\begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}$
- C. $\begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix}$
- D. $\begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$
- E. $\begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$

- **41.** Let A be a 3×5 matrix of rank 2. Which statement is true.
- A. For every \mathbf{b} , $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- B. For some \mathbf{b} , $A\mathbf{x} = \mathbf{b}$ has a unique solution, and for some \mathbf{b} , it has no solution.
- C. For every \mathbf{b} , $A\mathbf{x} = \mathbf{b}$ has an infinite number of solutions.
- D. For some \mathbf{b} , $A\mathbf{x} = \mathbf{b}$ has an infinite number of solutions, and for some \mathbf{b} , it has no solution.
- E. For every \mathbf{b} , $A\mathbf{x} = \mathbf{b}$ has no solution.
- **42.** Let A, B, and C be 2×2 matrices and k a scalar. Which statements are true.
 - 1. If $A^2 = A$, then $A = I_n, -I_n$ or 0.
 - $2. \det(A+B) = \det(A) + \det(B).$
 - 3. $\det(kA) = k \det(A)$.
 - 4. If λ is an eigenvalue of A, then λ^2 is an eigenvalue of A^2 .
 - 5. $A \operatorname{adj}(A) = \det(A)I_2$.

- A. 1, 2, and 5.
- B. 3, 4, and 5.
- C. 1, 2, 3, 4, and 5.
- D. 2 and 3
- E. 4 and 5.
- **43.** Let $A = \begin{bmatrix} a & b & c \\ x & y & z \\ 3 & 6 & 9 \end{bmatrix}$ Which of the following matrices have the same determinant as A.
- A. 1, 2, and 4.
- B. 1 and 2.
- C. 2, 3, and 4.
- D. 1, 2, 3, and 4.
- E. 1 and 4.

- 1. $\begin{bmatrix} 3a & 3b & 3c \\ x & y & z \\ 1 & 2 & 3 \end{bmatrix}$
- $\begin{bmatrix}
 a x & b y & c z \\
 x & y & z \\
 3 & 6 & 9
 \end{bmatrix}$
- 3. $\begin{bmatrix} x & y & z \\ a & b & c \\ 3 & 6 & 9 \end{bmatrix}$
- 4. $\begin{bmatrix} x & y & z \\ 3 & 6 & 9 \\ a+x+3 & b+y+6 & c+z+9 \end{bmatrix}$

44. An eigenvalue of

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 3 & 0 & 2 \end{bmatrix}$$

is $\lambda = 4$. Find a basis for its eigenspace.

A.
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$

B.
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} -2\\2\\5 \end{bmatrix}$$

D.
$$\begin{bmatrix} 5 \\ 9 \\ 3 \end{bmatrix}$$

E.
$$\begin{bmatrix} 6 \\ 7 \\ 9 \end{bmatrix}$$

45. The matrix $A = \begin{bmatrix} -1 & -2 \\ 2 & -1 \end{bmatrix}$ has eigenvalues $-1 \pm 2i$, and an eigenvector corresponding to -1 + 2i is $\begin{bmatrix} i \\ 1 \end{bmatrix}$. Find the solution to the differential equation

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

such that $\mathbf{x}(0) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

A.
$$\mathbf{x}(t) = e^{-t} \begin{bmatrix} -\sin(2t) - \cos(2t) \\ -\sin(2t) + \cos(2t) \end{bmatrix}$$

B.
$$\mathbf{x}(t) = e^{-t} \begin{bmatrix} 2\sin(2t) - \cos(2t) \\ -2\sin(2t) + \cos(2t) \end{bmatrix}$$

C.
$$\mathbf{x}(t) = e^{2t} \begin{bmatrix} \sin(t) - \cos(t) \\ -\sin(t) + \cos(t) \end{bmatrix}$$

D.
$$\mathbf{x}(t) = e^{2t} \begin{bmatrix} \sin(-t) - \cos(-t) \\ -\sin(-t) + \cos(-t) \end{bmatrix}$$

E.
$$\mathbf{x}(t) = e^{-t} \begin{bmatrix} i \sin(2t) - \cos(2t) \\ 2i \sin(2t) + \cos(2t) \end{bmatrix}$$

46. Find the least squares line for the data points

$$(-1,3), (0,2), (1,4).$$

 $A. \quad y = \frac{1}{6}x + 3$

B.
$$y = \frac{1}{3}x + 2$$

C.
$$y = x + 3$$

D.
$$y = \frac{1}{2}x + \frac{5}{2}$$

$$E. \quad y = \frac{1}{2}x + 3$$

47. Find the eigenvalues of $A = \begin{bmatrix} 4 & 5 \\ -1 & 2 \end{bmatrix}$.

A.
$$4 \pm 2i$$

B.
$$3 \pm 2i$$

C.
$$1 \pm i$$

D.
$$4 \pm 2i$$

E.
$$4 \pm i$$

48. Let $A = \begin{bmatrix} 1 & -2 \\ 4 & 5 \end{bmatrix}$. An eigenvalue of A is $\lambda = 3 + 2i$. Find a corresponding eigenvector.

A.
$$\begin{bmatrix} 1-i\\2 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2+i \\ 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} -i \\ 2 \end{bmatrix}$$

D.
$$\begin{bmatrix} -1+i\\2 \end{bmatrix}$$

E.
$$\begin{bmatrix} 1+4i \\ 1 \end{bmatrix}$$

- **49.** Suppose that A is an orthogonal 3×3 matrix. Then $\det(3A^2) =$.
- A. 0
- B. 3
- C. 1/3
- D. 9
- E. 27

50. Find the general solution to the differential equation

$$\mathbf{x}'(t) = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \mathbf{x}(t)$$

A.
$$\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$

B.
$$\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

C.
$$\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

D.
$$\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

E.
$$\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} -4 \\ -2 \\ -3 \end{bmatrix}$$

Answers

- 1.E. 2.D. 3.E. 4.D. 5.C. 6.A. 7.B. 8.A. 9.E. 10.C. 11.E. 12.D. 13.A.
- **14.**D. **15.**B. **16.**D. **17.**A. **18.**C. **19.**A. **20.**B. **21.**C. **22.**A. **23.**E. **24.**C.
- **25.**D. **26.**A. **27.**B. **28.**C. **29.**C. **30.**D. **31.**B. **32.**B. **33.**A. **34.**A. **35.**C.
- **36.**E. **37.**D. **38.**A. **39.**A. **40.**C. **41.**D. **42.**E. **43.**A. **44.**E. **45.**A. **46.**E.
- **47.**B. **48.**D. **49.**E. **50.**A.