Computer Project # 2

RLC-Circuits

Goal: Investigate the charge on a capacitor in an *RLC* circuit with varying voltage.

<u>Tools needed</u>: ode45, plot routines.

<u>Description</u>: If Q(t) = charge on a capacitor at time t in an RLC circuit (with R, L and C being the resistance, inductance and capacitance, respectively, and E(t) = applied voltage), then Kirchoff's Laws give the following 2^{nd} order differential equation for Q(t):

$$(*) \qquad L\,Q''(t) + R\,Q\,'(t) + \frac{1}{C}\,Q(t) = E(t)$$

Questions: Assume L = 1, $C = \frac{1}{5}$, R = 4 and $E(t) = 8 \cos \omega t$.

- (1) Use **ode45** (and plot routines) to plot the solution of (*) with Q(0) = 0 and Q'(0) = 0 over the interval $0 \le t \le 50$, for these values of ω : $\omega = 0.0, 1.0, 2.0, 4.0, 10.0, 20.0$.
- (2) For each of these 6 plots, find the largest value of |Q(t)| over $30 \le t \le 50$ and fill in the table:

ω	Max value of $ Q(t) $ on $30 \le t \le 50$
0.0	
1.0	
2.0	
4.0	
10.0	
20.0	

(3) Does increasing ω appear to increase the maximum charge |Q(t)| on the capacitor? Interpret this result in terms of an equivalent spring-mass system.

Remark: There is an analogy between spring-mass systems and RLC circuits given by :

Spring-Mass System	RLC CIRCUIT
mx'' + cx' + kx = F(t)	$LQ''+RQ'+rac{1}{C}Q=E(t)$
x = Displacement	Q = Charge
x' = Velocity	Q' = I = Current
m = Mass	L = Inductance
c = Damping constant	R = Resistance
k = Spring constant	$1/C = (\text{Capacitance})^{-1}$
F(t) = External force	E(t) = Voltage