MA 224 FORMULAS

THE SECOND DERIVATIVE TEST

Suppose f is a function of two variables x and y, and that all the second-order partial derivatives are continuous. Let

$$D = f_{xx}f_{yy} - (f_{xy})^2$$

and suppose (a, b) is a critical point of f.

1. If D(a,b) < 0, then f has a saddle point at (a,b),

2. If D(a,b) > 0 and $f_{xx}(a,b) < 0$, then f has a relative maximum at (a,b).

3. If D(a,b) > 0 and $f_{xx}(a,b) > 0$, then f has a relative minimum at (a,b).

4. If D(a, b) = 0, the test is inconclusive.

LEAST-SQUARES LINE

The equation of the least-squares line for the *n* points (x_1,y_1) , (x_2,y_2) , ..., (x_n,y_n) , is y = mx + b, where *m* and *b* are solutions to the system of equations

$$(x_1^2 + x_2^2 + \dots + x_n^2)m + (x_1 + x_2 + \dots + x_n)b = x_1y_1 + x_2y_2 + \dots + x_ny_n$$
$$(x_1 + x_2 + \dots + x_n)m + nb = y_1 + y_2 + \dots + y_n$$

TRAPEZOIDAL RULE

$$\int_{a}^{b} f(x)dx \equiv \frac{\Delta x}{2} \bigg[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \bigg],$$

where $a = x_0, x_1, x_2, \dots, x_n = b$ subdivides [a, b] into n equal subintervals of length $\Delta x = \frac{b-a}{n}$.

ERROR ESTIMATE FOR THE TRAPEZOIDAL RULE

If M is the maximum value of |f''(x)| on the interval $a \le x \le b$, then

$$|E_n| \le \frac{M(b-a)^3}{12n^2}$$

GEOMETRIC SERIES

If 0 < |r| < 1, then

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}.$$

TAYLOR SERIES

The Taylor series of f(x) about x = a is the power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f^{(2)}(a)}{2!} (x-a)^2 + \dots$$

Examples: (with a = 0)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, for $-\infty < x < \infty$; $\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$, for $-1 < x < 1$.

Table of Integrals
Forms Involving a + bu
1. $\int \frac{u du}{a + bu} = \frac{1}{b^2} [a + bu - a \ln a + bu] + C$
2. $\int \frac{u^2 du}{a + bu} = \frac{1}{2b^3} [(a + bu)^2 - 4a(a + bu) + 2a^2 \ln a + bu] + C$
3. $\int \frac{u du}{(a+bu)^2} = \frac{1}{b^2} \left[\frac{a}{a+bu} + \ln a+bu \right] + C$
4. $\int u \sqrt{a+bu} du = \frac{2}{15b^2} (3bu-2a)(a+bu)^{3/2} + C$
5. $\int \frac{u du}{\sqrt{a+bu}} = \frac{2}{3b^2} (bu-2a)\sqrt{a+bu} + C$
6. $\int \frac{du}{u\sqrt{a+bu}} = \frac{1}{\sqrt{a}} \ln \left \frac{\sqrt{a+bu} - \sqrt{a}}{\sqrt{a+bu} + \sqrt{a}} \right + C \qquad \text{(if } a > 0\text{)}$
Forms Involving $\sqrt{a^2 + u^2}$
7. $\int \sqrt{a^2 + u^2} du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln u + \sqrt{a^2 + u^2} + C$
8. $\int u^2 \sqrt{a^2 + u^2} du = \frac{u}{8} (a^2 + 2u^2) \sqrt{a^2 + u^2} - \frac{a^4}{8} \ln u + \sqrt{a^2 + u^2} + C$
9. $\int \frac{du}{\sqrt{a^2 + u^2}} = \ln u + \sqrt{a^2 + u^2} + C$
10. $\int \frac{du}{u\sqrt{a^2+u^2}} = -\frac{1}{a} \ln \left \frac{\sqrt{a^2+u^2}+a}{u} \right + C$
11. $\int \frac{du}{u^2 \sqrt{a^2 + u^2}} = -\frac{\sqrt{a^2 + u^2}}{a^2 u} + C$
12. $\int \frac{du}{(a^2+u^2)^{3/2}} = \frac{u}{a^2\sqrt{a^2+u^2}} + C$
Forms Involving $\sqrt{u^2 - a^2}$
13. $\int \sqrt{u^2 - a^2} du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln u + \sqrt{u^2 - a^2} + C$
14. $\int u^2 \sqrt{u^2 - a^2} du = \frac{u}{8} (2u^2 - a^2) \sqrt{u^2 - a^2} - \frac{a^4}{8} \ln u + \sqrt{u^2 - a^2} + C$
15. $\int \frac{\sqrt{u^2 - a^2}}{u^2} du = -\frac{\sqrt{u^2 - a^2}}{u} + \ln u + \sqrt{u^2 - a^2} + C$
16. $\int \frac{du}{\sqrt{u^2 - a^2}} = \ln u + \sqrt{u^2 - a^2} + C$

17. $\int \frac{du}{u^2 \sqrt{u^2 - a^2}} = \frac{\sqrt{u^2 - a^2}}{a^2 u} + C$		
18. $\int \frac{du}{(u^2 - a^2)^{3/2}} = -\frac{u}{a^2 \sqrt{u^2 - a^2}} + C$		
Forms Involving $\sqrt{a^2 - u^2}$		
19. $\int \frac{\sqrt{a^2 - u^2}}{u} du = \sqrt{a^2 - u^2} - a \ln \left \frac{a + \sqrt{a^2 - u^2}}{u} \right + C$		
20. $\int \frac{du}{u\sqrt{a^2-u^2}} = -\frac{1}{a} \ln \left \frac{a+\sqrt{a^2-u^2}}{u} \right + C$		
21. $\int \frac{du}{u^2 \sqrt{a^2 - u^2}} = -\frac{\sqrt{a^2 - u^2}}{a^2 u} + C$		
22. $\int \frac{du}{(a^2 - u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 - u^2}} + C$		
Forms Involving e ^{ee} and In u		
23. $\int u e^{au} du = \frac{1}{a^2} (au - 1) e^{au} + C$		
24. $\int u^n e^{au} du = \frac{1}{a} u^n e^{au} - \frac{n}{a} \int u^{n-1} e^{au} du$		
25. $\int \frac{du}{1+be^{au}} = u - \frac{1}{a} \ln(1+be^{au}) + C$		
$26. \int \ln u du = u \ln u - u + C$		
27. $\int u^n \ln u du = \frac{u^{n+1}}{(n+1)^2} [(n+1)\ln u - 1] + C \qquad (n \neq -1)$		
$28. \int \frac{du}{u \ln u} = \ln \ln u + C$		
29. $\int (\ln u)^n du = u (\ln u)^n - n \int (\ln u)^{n-1} du$		

.

.

,