Use the graph of the function y = f(x), shown below, to answer questions #1 and #2:



1. Find the intervals for which f is increasing.

- A.  $[-3,0] \cup [-2,3]$
- *B*. [1,5]
- $C. [-4,-2] \cup [3,5]$
- D. [-3,0]
- *E*. None of the above

2. Find all values of x such that f(x) < 0.

- A.  $[-2,0) \cup [3,5)$
- B.  $[-4,-2) \cup (-2,1)$
- $C. [-3,0) \cup (0,1)$
- $D. [0,1) \cup (1,5)$
- E.  $[-4, -2) \cup [0,1)$
- 3. Suppose y is directly proportional to the product of x and the square of w and inversely proportional to the sum of r and s. If x = 2, w = 3, r = 1, and s = 5, then y = 15. Find the value of the constant of proportionality, k.
  - A. k = 5
  - B.  $k = \frac{18}{5}$
  - *C*. k = 3
  - *D*.  $k = \frac{1}{2}$
  - E. None of the above

4. Solve the following system of equations for x.

$$\begin{cases} y = x^2 + 4x - 7 \\ 2x - y = -1 \end{cases}$$

- A. x = -1, x = 2
- B. x = -4, x = 2
- C. x = -1, x = 6
- D. x = -4, x = 6
- E. None of the above

## Use the functions $f(x) = x^2 - 5$ and g(x) = x + 2 to answer questions #5 and #6:

5. Find and simplify (f-g)(-1).

- A. -3
- B. -1
- C. -5
- *D*. 3
- E. None of the above

6. Find and simplify  $(f \circ g)(x)$ 

- A.  $x^3 + 2x^2 5$
- B.  $x^2 1$
- C.  $x^3 + 2x^2 5x 10$
- D.  $x^2 3$
- $E. x^2 + 4x 1$
- 7. Given the parabola  $f(x) = 3x^2 6x + 1$ , state and identify the maximum or minimum value.
  - A. 1; maximum value
  - B. -2; maximum value
  - C. 1; minimum value
  - D. -2; minimum value
  - E. None of the above

8. Given below, on the left, is the graph of a basic function, y = f(x). The graph on the right was obtained by shifting, reflecting, stretching, and/or compressing the basic graph. Which of the following best describes the graph on the right?





- A. y = 3f(x+2)
- B.  $y = \frac{1}{3} f(x-2)$
- C. y = 3f(x-2)
- D.  $y = \frac{1}{3} f(x+2)$
- E. Not enough information given.
- 9. If the point, P(-3,1) is on the graph of y = f(x), find the corresponding point on the graph of y = -f(6x) + 4.

$$A.\left(-\frac{1}{2},3\right)$$

B. 
$$(-18, -5)$$

$$C. (-18,3)$$

$$D. \left(-\frac{1}{2}, -5\right)$$

- E. None of the above
- 10. Given below is the graph of a piecewise-defined function. Choose the function that corresponds to this graph.



$$A. \quad f(x) = \begin{cases} -1 & \text{if } x < 1 \\ x^2 - 3 & \text{if } x \ge 1 \end{cases}$$

B. 
$$f(x) = \begin{cases} 1 & \text{if } x < -1 \\ 3 - x^2 & \text{if } x \ge -1 \end{cases}$$

C. 
$$f(x) = \begin{cases} -1 & \text{if } x \le 1 \\ x^2 - 3 & \text{if } x > 1 \end{cases}$$

D. 
$$f(x) = \begin{cases} 1 & \text{if } x \le -1 \\ x^2 - 3 & \text{if } x > -1 \end{cases}$$

$$E. f(x) = \begin{cases} 1 & \text{if } x < -1 \\ x^2 - 3 & \text{if } x \ge -1 \end{cases}$$

11. Find the domain of  $f(x) = \frac{\sqrt{x+1}}{x^2 + 2x - 15}$ . Express your answer in interval notation.

$$A. (-\infty,3) \cup (3,\infty)$$

*B*. 
$$[-1,3)$$
 ∪  $(3,\infty)$ 

$$C. \left(-\infty, -1\right) \cup \left(-1, \infty\right)$$

$$D. \left(-\infty, -5\right) \cup \left(-5, -1\right]$$

E. 
$$(-\infty, -5) \cup (-5, 3) \cup (3, \infty)$$

12. Solve the following inequality. Express your answer in interval notation.

$$(x-2)^2(x+1)(x-5)<0$$

$$A. (-1,2) \cup (2,5)$$

$$B. (-\infty,2) \cup (5,\infty)$$

$$C. \left(-\infty,-1\right) \cup \left(-1,2\right)$$

$$D. \left(-\infty,-1\right) \cup \left(5,\infty\right)$$

E. None of the above

- 13. The speed of an airplane in still air is constant. The airplane, flying with the wind, travels 1800 miles in 3 hours. The return trip back to the starting point, against the wind, took 4 hours. Find the rate of the wind.
  - A. 75 mph
  - B. 60 mph
  - C. 68 mph
  - D. 85 mph
  - E. None of the above

14. During a recent baseball game, a batter popped up a pitch into the shallow outfield. The path the ball took was in the shape of a parabola. The ball was not caught and landed on the ground after 4 seconds. Let y = the height of the ball in feet and x = time in seconds. If the maximum height the ball reached was 120 feet, find a standard equation for the path of the ball. Disregard the height of the batter.

A. 
$$y = -7.5(x-2)^2 + 120$$

B. 
$$y = -30(x-2)^2 + 120$$

C. 
$$y = -x^2 + 120$$

D. 
$$y = -7.5(x+2)^2 + 120$$

E. 
$$y = -30(x+2)^2 + 120$$

15. An office cubicle is to have two rooms with each room having a 4 foot opening as shown below. The total cubicle (both rooms) will have 750 square feet of space. The walls cost \$50 per foot. Express the cost, *C*, of the walls as a function of *x*. Disregard the thickness of the walls. Simplify your function.



A. 
$$C(x) = 2x + \frac{150}{x} - 8$$

B. 
$$C(x) = \frac{379,000}{3}x - \frac{100}{3}x^2$$

C. 
$$C(x) = 200x + \frac{150,000}{x} - 400$$

D. 
$$C(x) = 100x + \frac{112,500}{x} - 400$$

E. 
$$C(x) = \frac{8}{3}x - \frac{20}{3}x^2$$

| Question # | Green Form<br>Fall 2006 | Answer                                                                                    |
|------------|-------------------------|-------------------------------------------------------------------------------------------|
| 1          | E                       | None of the above                                                                         |
| 1          |                         | $[-4, -2] \cup [0, 3]$                                                                    |
| 2          | В                       | $[-4,-2) \cup (-2,1)$                                                                     |
| 3          | A                       | k = 5                                                                                     |
| 4          | В                       | x = -4,  x = 2                                                                            |
| 5          | C                       | <b>-5</b>                                                                                 |
| 6          | Е                       | $x^2 + 4x - 1$                                                                            |
| 7          | D                       | −2; minimum value                                                                         |
| 8          | D                       | $y = \frac{1}{3} f\left(x+2\right)$                                                       |
| 9          | A                       | $\left(-\frac{1}{2},3\right)$                                                             |
| 10         | Е                       | $f(x) = \begin{cases} 1 & \text{if } x < -1 \\ x^2 - 3 & \text{if } x \ge -1 \end{cases}$ |
| 11         | В                       | $[-1,3)\cup(3,\infty)$                                                                    |
| 12         | A                       | $(-1,2)\cup(2,5)$                                                                         |
| 13         | A                       | 75 mph                                                                                    |
| 14         | В                       | $y = -30(x-2)^2 + 120$                                                                    |
| 15         | D                       | $C(x) = 100x + \frac{112,500}{x} - 400$                                                   |