In this chapter we introduce vectors and coordinate systems for three-dimensional space. This will be the setting for our study of the calculus of functions of two variables in Chapter 14 because the graph of such a function is a surface in space. In this chapter we will see that vectors provide particularly simple descriptions of lines and planes in space.

12.1 Three-Dimensional Coordinate Systems

To locate a point in a plane, two numbers are necessary. We know that any point in the plane can be represented as an ordered pair \((a, b)\) of real numbers, where \(a\) is the \(x\)-coordinate and \(b\) is the \(y\)-coordinate. For this reason, a plane is called two-dimensional.

To locate a point in space, three numbers are required. We represent any point in space by an ordered triple \((a, b, c)\) of real numbers.

In order to represent points in space, we first choose a fixed point \(O\) (the origin) and three directed lines through \(O\) that are perpendicular to each other, called the coordinate axes and labeled the \(x\)-axis, \(y\)-axis, and \(z\)-axis. Usually we think of the \(x\)- and \(y\)-axes as being horizontal and the \(z\)-axis as being vertical, and we draw the orientation of the axes as in Figure 1. The direction of the \(z\)-axis is determined by the right-hand rule as illustrated in Figure 2. If you curl the fingers of your right hand around the \(z\)-axis in the direction of a 90° counterclockwise rotation from the positive \(x\)-axis to the positive \(y\)-axis, then your thumb points in the positive direction of the \(z\)-axis.

The three coordinate axes determine the three coordinate planes illustrated in Figure 3(a). The \(xy\)-plane is the plane that contains the \(x\)- and \(y\)-axes; the \(yz\)-plane contains the \(y\)- and \(z\)-axes; the \(xz\)-plane contains the \(x\)- and \(z\)-axes. These three coordinate planes divide space into eight parts, called octants. The first octant, in the foreground, is determined by the positive axes.

Because many people have some difficulty visualizing diagrams of three-dimensional figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom corner of a room and call the corner the origin. The wall on your left is in the \(xz\)-plane, the wall on your right is in the \(yz\)-plane, and the floor is in the \(xy\)-plane. The \(x\)-axis runs along the intersection of the floor and the left wall. The \(y\)-axis runs along the intersection of the floor and the right wall. The \(z\)-axis runs up from the floor toward the ceiling along the intersection of the two walls. You are situated in the first octant, and you can now imagine seven other rooms situated in the other seven octants (three on the same floor and four on the floor below), all connected by the common corner point \(O\).
Now if \( P \) is any point in space, let \( a \) be the (directed) distance from the \( yz \)-plane to \( P \), let \( b \) be the distance from the \( xz \)-plane to \( P \), and let \( c \) be the distance from the \( xy \)-plane to \( P \). We represent the point \( P \) by the ordered triple \((a, b, c)\) of real numbers and we call \( a \), \( b \), and \( c \) the coordinates of \( P \): \( a \) is the \( x \)-coordinate, \( b \) is the \( y \)-coordinate, and \( c \) is the \( z \)-coordinate. Thus, to locate the point \((a, b, c)\) we can start at the origin \( O \) and move \( a \) units along the \( x \)-axis, then \( b \) units parallel to the \( y \)-axis, and then \( c \) units parallel to the \( z \)-axis as in Figure 4.

The point \( P(a, b, c) \) determines a rectangular box as in Figure 5. If we drop a perpendicular from \( P \) to the \( xy \)-plane, we get a point \( Q \) with coordinates \((a, b, 0)\) called the projection of \( P \) on the \( xy \)-plane. Similarly, \( R(0, b, c) \) and \( S(a, 0, c) \) are the projections of \( P \) on the \( yz \)-plane and \( xz \)-plane, respectively.

As numerical illustrations, the points \((-4, 3, -5)\) and \((3, -2, -6)\) are plotted in Figure 6.

The Cartesian product \( \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) \mid x, y, z \in \mathbb{R}\} \) is the set of all ordered triples of real numbers and is denoted by \( \mathbb{R}^3 \). We have given a one-to-one correspondence between points \( P \) in space and ordered triples \((a, b, c)\) in \( \mathbb{R}^3 \). It is called a three-dimensional rectangular coordinate system. Notice that, in terms of coordinates, the first octant can be described as the set of points whose coordinates are all positive.

In two-dimensional analytic geometry, the graph of an equation involving \( x \) and \( y \) is a curve in \( \mathbb{R}^2 \). In three-dimensional analytic geometry, an equation in \( x \), \( y \), and \( z \) represents a surface in \( \mathbb{R}^3 \).

**EXAMPLE 1** What surfaces in \( \mathbb{R}^3 \) are represented by the following equations?

(a) \( z = 3 \)

(b) \( y = 5 \)

**SOLUTION**

(a) The equation \( z = 3 \) represents the set \( \{(x, y, z) \mid z = 3\} \), which is the set of all points in \( \mathbb{R}^3 \) whose \( z \)-coordinate is 3. This is the horizontal plane that is parallel to the \( xy \)-plane and three units above it as in Figure 7(a).

(b) \( y = 5 \), a plane in \( \mathbb{R}^3 \)

(c) \( y = 5 \), a line in \( \mathbb{R}^2 \)
(b) The equation $y = 5$ represents the set of all points in $\mathbb{R}^3$ whose $y$-coordinate is 5. This is the vertical plane that is parallel to the $xz$-plane and five units to the right of it as in Figure 7(b).

**NOTE** - When an equation is given, we must understand from the context whether it represents a curve in $\mathbb{R}^2$ or a surface in $\mathbb{R}^3$. In Example 1, $y = 5$ represents a plane in $\mathbb{R}^3$, but of course $y = 5$ can also represent a line in $\mathbb{R}^2$ if we are dealing with two-dimensional analytic geometry. See Figure 7(b) and (c).

In general, if $k$ is a constant, then $x = k$ represents a plane parallel to the $yz$-plane, $y = k$ is a plane parallel to the $xz$-plane, and $z = k$ is a plane parallel to the $xy$-plane. In Figure 5, the faces of the rectangular box are formed by the three coordinate planes $x = 0$ (the $yz$-plane), $y = 0$ (the $xz$-plane), and $z = 0$ (the $xy$-plane), and the planes $x = a$, $y = b$, and $z = c$.

**EXAMPLE 2** Describe and sketch the surface in $\mathbb{R}^3$ represented by the equation $y = x$.

**SOLUTION** The equation represents the set of all points in $\mathbb{R}^3$ whose $x$- and $y$-coordinates are equal, that is, $\{(x, x, z) \mid x \in \mathbb{R}, z \in \mathbb{R}\}$. This is a vertical plane that intersects the $xy$-plane in the line $y = x$, $z = 0$. The portion of this plane that lies in the first octant is sketched in Figure 8.

The familiar formula for the distance between two points in a plane is easily extended to the following three-dimensional formula.

**Distance Formula in Three Dimensions** The distance $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

To see why this formula is true, we construct a rectangular box as in Figure 9, where $P_1$ and $P_2$ are opposite vertices and the faces of the box are parallel to the coordinate planes. If $A(x_2, y_1, z_1)$ and $B(x_2, y_2, z_1)$ are the vertices of the box indicated in the figure, then

$$|P_1A| = |x_2 - x_1| \quad |AB| = |y_2 - y_1| \quad |BP_1| = |z_2 - z_1|$$

Because triangles $P_1BP_2$ and $P_1AB$ are both right-angled, two applications of the Pythagorean Theorem give

$$|P_1P_2|^2 = |P_1B|^2 + |BP_2|^2$$

and

$$|P_1B|^2 = |P_1A|^2 + |AB|^2$$

Combining these equations, we get

$$|P_1P_2|^2 = |P_1A|^2 + |AB|^2 + |BP_1|^2$$

$$= (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$

Therefore

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
EXAMPLE 3 The distance from the point \(P(2, -1, 7)\) to the point \(Q(1, -3, 5)\) is
\[
|PQ| = \sqrt{(1 - 2)^2 + (-3 + 1)^2 + (5 - 7)^2} = \sqrt{1 + 4 + 4} = 3
\]

EXAMPLE 4 Find an equation of a sphere with radius \(r\) and center \(C(h, k, l)\).

SOLUTION By definition, a sphere is the set of all points \(P(x, y, z)\) whose distance from \(C\) is \(r\). (See Figure 10.) Thus, \(P\) is on the sphere if and only if \(|PC| = r\). Squaring both sides, we have \(|PC|^2 = r^2\) or
\[
(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2
\]

The result of Example 4 is worth remembering.

**Equation of a Sphere** An equation of a sphere with center \(C(h, k, l)\) and radius \(r\) is
\[
(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2
\]

In particular, if the center is the origin \(O\), then an equation of the sphere is
\[
x^2 + y^2 + z^2 = r^2
\]

EXAMPLE 5 Show that \(x^2 + y^2 + z^2 + 4x - 6y + 2z + 5 = 0\) is the equation of a sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if we complete squares:
\[
(x^2 + 4x + 4) + (y^2 - 6y + 9) + (z^2 + 2z + 1) = -6 + 4 + 9 + 1
\]
\[
(x + 2)^2 + (y - 3)^2 + (z + 1)^2 = 8
\]

Comparing this equation with the standard form, we see that it is the equation of a sphere with center \((-2, 3, -1)\) and radius \(\sqrt{8} = 2\sqrt{2}\).

EXAMPLE 6 What region in \(\mathbb{R}^3\) is represented by the following inequalities?
\[
1 \leq x^2 + y^2 + z^2 \leq 4 \quad z \leq 0
\]

SOLUTION The inequalities
\[
1 \leq x^2 + y^2 + z^2 \leq 4
\]
can be rewritten as
\[
1 \leq \sqrt{x^2 + y^2 + z^2} \leq 2
\]

so they represent the points \((x, y, z)\) whose distance from the origin is at least 1 and at most 2. But we are also given that \(z \leq 0\), so the points lie on or below the xy-plane. Thus, the given inequalities represent the region that lies between (or on) the spheres \(x^2 + y^2 + z^2 = 1\) and \(x^2 + y^2 + z^2 = 4\) and beneath (or on) the xy-plane. It is sketched in Figure 11.
12.1 Exercises

Suppose you start at the origin, move along the x-axis a distance of 4 units in the positive direction, and then move onward a distance of 3 units. What are the coordinates of your position?

Sketch the points (0, 5, 2), (4, 0, -1), (2, 4, 6), and (1, -1, 2) in a single set of coordinate axes.

Which of the points P(6, 2, 3), Q(-5, -1, 4), and R(0, 3, 8) is closest to the xy-plane? Which point lies in the yz-plane?

What are the projections of the point (2, 3, 5) on the xy-, yz-, and xz-planes? Draw a rectangular box with the origin and (2, 3, 5) as opposite vertices and with its faces parallel to the coordinate planes. Label all vertices of the box. Find the length of the diagonal of the box.

Describe and sketch the surface in \( \mathbb{R}^3 \) represented by the equation \( x + y = 2 \).

1) What does the equation \( x = 4 \) represent in \( \mathbb{R}^2 \)? What does it represent in \( \mathbb{R}^3 \)? Illustrate with sketches.

2) What does the equation \( y = 3 \) represent in \( \mathbb{R}^3 \)? What does the pair of equations \( y = 3, z = 5 \) represent? In other words, describe the set of points \( (x, y, z) \) such that \( y = 3 \) and \( z = 5 \). Illustrate with a sketch.

15-18 Show that the equation represents a sphere, and find its center and radius.

15. \( x^2 + y^2 + z^2 - 6x + 4y - 2z = 11 \)

16. \( x^2 + y^2 + z^2 = 4x - 2y \)

17. \( x^2 + y^2 + z^2 = x + y + z \)

18. \( 2x^2 + 4y^2 + 4z^2 - 8x + 16y = 1 \)

19. (a) Prove that the midpoint of the line segment from \( P_1(x_1, y_1, z_1) \) to \( P_2(x_2, y_2, z_2) \) is

\[
\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right)
\]

(b) Find the lengths of the medians of the triangle with vertices \( A(1, 2, 3), B(-2, 0, 5), \) and \( C(4, 1, 5) \).

20. Find an equation of a sphere if one of its diameters has endpoints (2, 1, 4) and (4, 3, 10).

23. Find equations of the spheres with center \((2, -3, 6)\) that touch
   \( (a) \) the xy-plane, \( (b) \) the yz-plane, \( (c) \) the xz-plane.

22. Find an equation of the largest sphere with center \((5, 4, 9)\) that is contained in the first octant.

23-34 Describe in words the region of \( \mathbb{R}^3 \) represented by the equation or inequality.

23. \( y = -4 \)

24. \( x = 10 \)

25. \( x > 3 \)

26. \( y \geq 0 \)

27. \( 0 \leq z \leq 6 \)

28. \( y = z \)

29. \( x^2 + y^2 + z^2 > 1 \)

30. \( 1 \leq x^2 + y^2 + z^2 \leq 25 \)

31. \( x^2 + y^2 + z^2 - 2z < 3 \)

32. \( x^2 + y^2 = 1 \)

33. \( x^2 + z^2 < 9 \)

34. \( xyz = 0 \)

35-38 Write inequalities to describe the region.

35. The half-space consisting of all points to the left of the xy-plane

36. The solid rectangular box in the first octant bounded by the planes \( x = 1, y = 2, \) and \( z = 3 \)

37. The region consisting of all points between (but not on) the spheres of radius \( r \) and \( R \) centered at the origin, where \( r < R \)

38. The solid upper hemisphere of the sphere of radius 2 centered at the origin
39. The figure shows a line $L_1$ in space and a second line $L_2$, which is the projection of $L_1$ on the $xy$-plane. (In other words, the points on $L_2$ are directly beneath, or above, the points on $L_1$.)

(a) Find the coordinates of the point $P$ on the line $L_1$.
(b) Locate on the diagram the points $A$, $B$, and $C$, where the line $L_1$ intersects the $xy$-plane, the $yz$-plane, and the $xz$-plane, respectively.

40. Consider the points $P$ such that the distance from $P$ to $A(-1, 5, 3)$ is twice the distance from $P$ to $B(6, 2, -2)$. Show that the set of all such points is a sphere, and find its center and radius.

41. Find an equation of the set of all points equidistant from the points $A(-1, 5, 3)$ and $B(6, 2, -2)$. Describe the set.

42. Find the volume of the solid that lies inside both of the spheres

$\quad \quad x^2 + y^2 + z^2 + 4x - 2y + 4z + 5 = 0$

and

$\quad \quad x^2 + y^2 + z^2 = 4$

---

12.2 Vectors

The term vector is used by scientists to indicate a quantity (such as displacement or velocity or force) that has both magnitude and direction. A vector is often represented by an arrow or a directed line segment. The length of the arrow represents the magnitude of the vector and the arrow points in the direction of the vector. We denote a vector by printing a letter in boldface ($\mathbf{v}$) or by putting an arrow above the letter ($\vec{v}$).

For instance, suppose a particle moves along a line segment from point $A$ to point $B$. The corresponding displacement vector $\mathbf{v}$, shown in Figure 1, has initial point $A$ (the tail) and terminal point $B$ (the tip) and we indicate this by writing $\mathbf{v} = \overrightarrow{AB}$. Notice that the vector $\mathbf{u} = \overrightarrow{CD}$ has the same length and the same direction as $\mathbf{v}$ even though it is in a different position. We say that $\mathbf{u}$ and $\mathbf{v}$ are equivalent (or equal) and we write $\mathbf{u} = \mathbf{v}$. The zero vector, denoted by $\mathbf{0}$, has length 0. It is the only vector with no specific direction.

### Combining Vectors

Suppose a particle moves from $A$ to $B$, so its displacement vector is $\overrightarrow{AB}$. Then the particle changes direction and moves from $B$ to $C$, with displacement vector $\overrightarrow{BC}$ as in Figure 2. The combined effect of these displacements is that the particle has moved from $A$ to $C$. The resulting displacement vector $\overrightarrow{AC}$ is called the sum of $\overrightarrow{AB}$ and $\overrightarrow{BC}$ and we write

$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

In general, if we start with vectors $\mathbf{u}$ and $\mathbf{v}$, we first move $\mathbf{v}$ so that its tail coincides with the tip of $\mathbf{u}$ and define the sum of $\mathbf{u}$ and $\mathbf{v}$ as follows.

**Definition of Vector Addition** If $\mathbf{u}$ and $\mathbf{v}$ are vectors positioned so the initial point of $\mathbf{v}$ is at the terminal point of $\mathbf{u}$, then the sum $\mathbf{u} + \mathbf{v}$ is the vector from the initial point of $\mathbf{u}$ to the terminal point of $\mathbf{v}$.
The definition of vector addition is illustrated in Figure 3. You can see why this definition is sometimes called the **Triangle Law**.

**FIGURE 3** The Triangle Law

**FIGURE 4** The Parallelogram Law

In Figure 4 we start with the same vectors $u$ and $v$ as in Figure 3 and draw another copy of $v$ with the same initial point as $u$. Completing the parallelogram, we see that $u + v = v + u$. This also gives another way to construct the sum: If we place $u$ and $v$ so they start at the same point, then $u + v$ lies along the diagonal of the parallelogram with $u$ and $v$ as sides. (This is called the **Parallelogram Law**.)

**EXAMPLE 1** Draw the sum of the vectors $a$ and $b$ shown in Figure 5.

**SOLUTION** First we translate $b$ and place its tail at the tip of $a$, being careful to draw a copy of $b$ that has the same length and direction. Then we draw the vector $a + b$ [see Figure 6(a)] starting at the initial point of $a$ and ending at the terminal point of the copy of $b$.

Alternatively, we could place $b$ so it starts where $a$ starts and construct $a + b$ by the Parallelogram Law as in Figure 6(b).

**FIGURE 6**

(a)  
(b)

It is possible to multiply a vector by a real number $c$. (In this context we call the real number $c$ a **scalar** to distinguish it from a vector.) For instance, we want $2v$ to be the same vector as $v + v$, which has the same direction as $v$ but is twice as long. In general, we multiply a vector by a scalar as follows.

**Definition of Scalar Multiplication**  If $c$ is a scalar and $v$ is a vector, then the scalar multiple $cv$ is the vector whose length is $|c|$ times the length of $v$ and whose direction is the same as $v$ if $c > 0$ and is opposite to $v$ if $c < 0$. If $c = 0$ or $v = 0$, then $cv = 0$.

This definition is illustrated in Figure 7. We see that real numbers work like scaling factors here; that's why we call them scalars. Notice that two nonzero vectors are parallel if they are scalar multiples of one another. In particular, the vector $-v = (-1)v$ has the same length as $v$ but points in the opposite direction. We call it the **negative** of $v$.

By the **difference** $u - v$ of two vectors we mean

$$u - v = u + (-v)$$
So we can construct $\mathbf{u} - \mathbf{v}$ by first drawing the negative of $\mathbf{v}$, $-\mathbf{v}$, and then adding it to $\mathbf{u}$ by the Parallelogram Law as in Figure 8(a). Alternatively, since $\mathbf{v} + (\mathbf{u} - \mathbf{v}) = \mathbf{u}$, the vector $\mathbf{u} - \mathbf{v}$, when added to $\mathbf{v}$, gives $\mathbf{u}$. So we could construct $\mathbf{u} - \mathbf{v}$ as in Figure 8(b) by means of the Triangle Law.

**Example 2** If $\mathbf{a}$ and $\mathbf{b}$ are the vectors shown in Figure 9, draw $\mathbf{a} - 2\mathbf{b}$.

**Solution** We first draw the vector $-2\mathbf{b}$ pointing in the direction opposite to $\mathbf{b}$ and twice as long. We place it with its tail at the tip of $\mathbf{a}$ and then use the Triangle Law to draw $\mathbf{a} + (-2\mathbf{b})$ as in Figure 10.

---

### Components

For some purposes it's best to introduce a coordinate system and treat vectors algebraically. If we place the initial point of a vector $\mathbf{a}$ at the origin of a rectangular coordinate system, then the terminal point of $\mathbf{a}$ has coordinates of the form $(a_1, a_2)$ or $(a_1, a_2, a_3)$, depending on whether our coordinate system is two- or three-dimensional (see Figure 11). These coordinates are called the components of $\mathbf{a}$ and we write

$$\mathbf{a} = \langle a_1, a_2 \rangle \quad \text{and} \quad \mathbf{a} = \langle a_1, a_2, a_3 \rangle$$

We use the notation $\langle a_1, a_2 \rangle$ for the ordered pair that refers to a vector so as not to confuse it with the ordered pair $(a_1, a_2)$ that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector $\overrightarrow{OP} = (3, 2)$ whose terminal point is $P(3, 2)$. What they have in common is that the terminal point is reached from the initial point by a displacement of three units to the right and two upward. We can think of all these geometric vectors as representations of the
algebraic vector \( \mathbf{a} = (3, 2) \). The particular representation \( \overrightarrow{OP} \) from the origin to the point \( P(3, 2) \) is called the position vector of the point \( P \).

In three dimensions, the vector \( \mathbf{a} = \overrightarrow{OP} = (a_1, a_2, a_3) \) is the position vector of the point \( P(a_1, a_2, a_3) \). (See Figure 13.) Let's consider any other representation \( \overrightarrow{AB} \) of \( \mathbf{a} \), where the initial point is \( A(x_1, y_1, z_1) \) and the terminal point is \( B(x_2, y_2, z_2) \). Then we must have \( x_1 + a_1 = x_2, y_1 + a_2 = y_2, \) and \( z_1 + a_3 = z_2 \) and so \( a_1 = x_2 - x_1, a_2 = y_2 - y_1, \) and \( a_3 = z_2 - z_1 \). Thus, we have the following result.

**Example 3**
Given the points \( A(x_1, y_1, z_1) \) and \( B(x_2, y_2, z_2) \), the vector \( \mathbf{a} \) with representation \( \overrightarrow{AB} \) is

\[
\mathbf{a} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)
\]

**Solution**
By (1), the vector corresponding to \( \overrightarrow{AB} \) is

\[
\mathbf{a} = (-2 - 2, 1 - (-3), 1 - 4) = (-4, 4, -3)
\]

The magnitude or length of the vector \( \mathbf{v} \) is the length of any of its representations and is denoted by the symbol \( |\mathbf{v}| \) or \( \|\mathbf{v}\| \). By using the distance formula to compute the length of a segment \( \overrightarrow{OP} \), we obtain the following formulas.

The length of the two-dimensional vector \( \mathbf{a} = (a_1, a_2) \) is

\[
|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}
\]

The length of the three-dimensional vector \( \mathbf{a} = (a_1, a_2, a_3) \) is

\[
|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}
\]

How do we add vectors algebraically? Figure 14 shows that if \( \mathbf{a} = (a_1, a_2) \) and \( \mathbf{b} = (b_1, b_2) \), then the sum is \( \mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2) \), at least for the case where the components are positive. In other words, to add algebraic vectors we add their components. Similarly, to subtract vectors we subtract components. From the similar triangles in Figure 15 we see that the components of \( c\mathbf{a} \) are \( ca_1 \) and \( ca_2 \). So to multiply a vector by a scalar we multiply each component by that scalar.

If \( \mathbf{a} = (a_1, a_2) \) and \( \mathbf{b} = (b_1, b_2) \), then

\[
\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2) \quad \mathbf{a} - \mathbf{b} = (a_1 - b_1, a_2 - b_2) \quad c\mathbf{a} = (ca_1, ca_2)
\]

Similarly, for three-dimensional vectors,

\[
(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)
\]

\[
(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)
\]

\[
c(a_1, a_2, a_3) = (ca_1, ca_2, ca_3)
\]
EXAMPLE 4 If \( \mathbf{a} = \langle 4, 0, 3 \rangle \) and \( \mathbf{b} = \langle -2, 1, 5 \rangle \), find \( |\mathbf{a}| \) and the vectors \( \mathbf{a} + \mathbf{b}, \mathbf{a} - \mathbf{b}, 3\mathbf{b}, \) and \( 2\mathbf{a} + 5\mathbf{b} \).

SOLUTION

\[
|\mathbf{a}| = \sqrt{4^2 + 0^2 + 3^2} = \sqrt{25} = 5
\]

\[
\mathbf{a} + \mathbf{b} = \langle 4, 0, 3 \rangle + \langle -2, 1, 5 \rangle = \langle 2, 1, 8 \rangle
\]

\[
\mathbf{a} - \mathbf{b} = \langle 4, 0, 3 \rangle - \langle -2, 1, 5 \rangle = \langle 6, -1, -2 \rangle
\]

\[
3\mathbf{b} = 3\langle -2, 1, 5 \rangle = \langle 3(-2), 3(1), 3(5) \rangle = \langle -6, 3, 15 \rangle
\]

\[
2\mathbf{a} + 5\mathbf{b} = 2\langle 4, 0, 3 \rangle + 5\langle -2, 1, 5 \rangle = \langle 8, 0, 6 \rangle + \langle -10, 5, 25 \rangle = \langle -2, 5, 31 \rangle
\]

We denote by \( V_2 \) the set of all two-dimensional vectors and by \( V_3 \) the set of all three-dimensional vectors. More generally, we will later need to consider the set \( V_n \) of all \( n \)-dimensional vectors. An \( n \)-dimensional vector is an ordered \( n \)-tuple:

\[
\mathbf{a} = \langle a_1, a_2, \ldots, a_n \rangle
\]

where \( a_1, a_2, \ldots, a_n \) are real numbers that are called the components of \( \mathbf{a} \). Addition and scalar multiplication are defined in terms of components just as for the cases \( n = 2 \) and \( n = 3 \).

**Properties of Vectors** If \( \mathbf{a}, \mathbf{b}, \) and \( \mathbf{c} \) are vectors in \( V_n \) and \( c \) and \( d \) are scalars, then

1. \( \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a} \)
2. \( \mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c} \)
3. \( \mathbf{a} + \mathbf{0} = \mathbf{a} \)
4. \( \mathbf{a} + (-\mathbf{a}) = \mathbf{0} \)
5. \( c(\mathbf{a} + \mathbf{b}) = ca + cb \)
6. \( (c + d)\mathbf{a} = ca + da \)
7. \( (cd)\mathbf{a} = c(da) \)
8. \( i\mathbf{a} = \mathbf{a} \)

These eight properties of vectors can be readily verified either geometrically or algebraically. For instance, Property 1 can be seen from Figure 4 (it's equivalent to the Parallelogram Law) or as follows for the case \( n = 2 \):

\[
\mathbf{a} + \mathbf{b} = \langle a_1, a_2 \rangle + \langle b_1, b_2 \rangle = \langle a_1 + b_1, a_2 + b_2 \rangle = \langle b_1 + a_1, b_2 + a_2 \rangle = \langle b_1, b_2 \rangle + \langle a_1, a_2 \rangle = \mathbf{b} + \mathbf{a}
\]

We can see why Property 2 (the associative law) is true by looking at Figure 16 and applying the Triangle Law several times: The vector \( \mathbf{PQ} \) is obtained either by first constructing \( \mathbf{a} + \mathbf{b} \) and then adding \( \mathbf{c} \) or by adding \( \mathbf{a} \) to the vector \( \mathbf{b} + \mathbf{c} \).

Three vectors in \( V_3 \) play a special role. Let

\[
i = \langle 1, 0, 0 \rangle \quad j = \langle 0, 1, 0 \rangle \quad k = \langle 0, 0, 1 \rangle
\]
Then \( \mathbf{i}, \mathbf{j}, \) and \( \mathbf{k} \) are vectors that have length 1 and point in the directions of the positive \( x-, y-, \) and \( z- \)axes. Similarly, in two dimensions we define \( \mathbf{i} = \langle 1, 0 \rangle \) and \( \mathbf{j} = \langle 0, 1 \rangle \). (See Figure 17.)

**Figure 17**

ud basis vectors in \( V_3 \) and \( V_1 \)

If \( \mathbf{a} = \langle a_1, a_2, a_3 \rangle \), then we can write

\[
\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle a_1, 0, 0 \rangle + \langle 0, a_2, 0 \rangle + \langle 0, 0, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}
\]

Thus, any vector in \( V_3 \) can be expressed in terms of the standard basis vectors \( \mathbf{i}, \mathbf{j}, \) and \( \mathbf{k} \). For instance,

\[
\langle 1, -2, 6 \rangle = \mathbf{i} - 2 \mathbf{j} + 6 \mathbf{k}
\]

Similarly, in two dimensions, we can write

\[
\mathbf{a} = \langle a_1, a_2 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j}
\]

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with Figure 17.

**Example 5** If \( \mathbf{a} = \mathbf{i} + 2 \mathbf{j} - 3 \mathbf{k} \) and \( \mathbf{b} = 4 \mathbf{i} + 7 \mathbf{k} \), express the vector \( 2 \mathbf{a} + 3 \mathbf{b} \) in terms of \( \mathbf{i}, \mathbf{j}, \) and \( \mathbf{k} \).

**Solution** Using Properties 1, 2, 5, 6, and 7 of vectors, we have

\[
2 \mathbf{a} + 3 \mathbf{b} = 2(\mathbf{i} + 2 \mathbf{j} - 3 \mathbf{k}) + 3(4 \mathbf{i} + 7 \mathbf{k}) = 2 \mathbf{i} + 4 \mathbf{j} - 6 \mathbf{k} + 12 \mathbf{i} + 21 \mathbf{k} = 14 \mathbf{i} + 4 \mathbf{j} + 15 \mathbf{k}
\]

A unit vector is a vector whose length is 1. For instance, \( \mathbf{i}, \mathbf{j}, \) and \( \mathbf{k} \) are all unit vectors. In general, if \( \mathbf{a} \neq \mathbf{0} \), then the unit vector that has the same direction as \( \mathbf{a} \) is

\[
\mathbf{u} = \frac{1}{|\mathbf{a}|} \mathbf{a} = \frac{\mathbf{a}}{|\mathbf{a}|}
\]

In order to verify this, we let \( c = 1/|\mathbf{a}| \). Then \( \mathbf{u} = c \mathbf{a} \) and \( c \) is a positive scalar, so \( \mathbf{u} \) has the same direction as \( \mathbf{a} \). Also

\[
|\mathbf{u}| = |c \mathbf{a}| = |c| |\mathbf{a}| = \frac{1}{|\mathbf{a}|} |\mathbf{a}| = 1
\]
**Example 6** Find the unit vector in the direction of the vector \(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}\).

**Solution** The given vector has length

\[
|2\mathbf{i} - \mathbf{j} - 2\mathbf{k}| = \sqrt{2^2 + (-1)^2 + (-2)^2} = \sqrt{9} = 3
\]

so, by Equation 4, the unit vector with the same direction is

\[
\frac{1}{3}(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = \frac{2}{3}\mathbf{i} - \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}
\]

---

**Applications**

Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see how they describe the velocity and acceleration of objects moving in space. Here we look at forces.

A force is represented by a vector because it has both a magnitude (measured in pounds or newtons) and a direction. If several forces are acting on an object, the resultant force experienced by the object is the vector sum of these forces.

**Example 7** A 100-lb weight hangs from two wires as shown in Figure 19. Find the tensions (forces) \(T_1\) and \(T_2\) in both wires and their magnitudes.

**Solution** We first express \(T_1\) and \(T_2\) in terms of their horizontal and vertical components. From Figure 20 we see that

\[
T_1 = -|T_1|\cos 50^\circ \mathbf{i} + |T_1|\sin 50^\circ \mathbf{j}
\]

\[
T_2 = |T_2|\cos 32^\circ \mathbf{i} + |T_2|\sin 32^\circ \mathbf{j}
\]

The resultant \(T_1 + T_2\) of the tensions counterbalances the weight \(w\) and so we must have

\[
T_1 + T_2 = -w = 100\mathbf{j}
\]

Thus

\[
(-|T_1|\cos 50^\circ + |T_2|\cos 32^\circ)\mathbf{i} + (|T_1|\sin 50^\circ + |T_2|\sin 32^\circ)\mathbf{j} = 100\mathbf{j}
\]

Equating components, we get

\[
-|T_1|\cos 50^\circ + |T_2|\cos 32^\circ = 0
\]

\[
|T_1|\sin 50^\circ + |T_2|\sin 32^\circ = 100
\]

Solving the first of these equations for \(|T_2|\) and substituting into the second, we get

\[
|T_1|\sin 50^\circ + \frac{|T_1|\cos 50^\circ}{\cos 32^\circ}\sin 32^\circ = 100
\]

So the magnitudes of the tensions are

\[
|T_1| = \frac{100}{\sin 50^\circ + \tan 32^\circ \cos 50^\circ} \approx 85.64 \text{ lb}
\]

and

\[
|T_2| = \frac{|T_1|\cos 50^\circ}{\cos 32^\circ} \approx 64.91 \text{ lb}
\]

Substituting these values in (5) and (6), we obtain the tension vectors

\[
T_1 = -55.05\mathbf{i} + 65.60\mathbf{j} \quad T_2 = 55.05\mathbf{i} + 34.40\mathbf{j}
\]
12.2 Exercises

1. Are the following quantities vectors or scalars? Explain.
   (a) The cost of a theater ticket
   (b) The current in a river
   (c) The initial flight path from Houston to Dallas
   (d) The population of the world

2. What is the relationship between the point $(4, 7)$ and the vector $(4, 7)$? Illustrate with a sketch.

3. Name all the equal vectors in the parallelogram shown.

4. Write each combination of vectors as a single vector.
   (a) \( \overrightarrow{PQ} + \overrightarrow{QR} \)
   (b) \( \overrightarrow{RP} + \overrightarrow{PS} \)
   (c) \( \overrightarrow{QS} - \overrightarrow{PS} \)
   (d) \( \overrightarrow{RS} + \overrightarrow{SP} + \overrightarrow{PQ} \)

5. Copy the vectors in the figure and use them to draw the following vectors.
   (a) \( \mathbf{u} + \mathbf{v} \)
   (b) \( \mathbf{u} - \mathbf{v} \)
   (c) \( \mathbf{v} + \mathbf{w} \)
   (d) \( \mathbf{w} + \mathbf{v} + \mathbf{u} \)

6. Copy the vectors in the figure and use them to draw the following vectors.
   (a) \( \mathbf{a} + \mathbf{b} \)
   (b) \( \mathbf{a} - \mathbf{b} \)
   (c) \( 2\mathbf{a} \)
   (d) \( -\frac{1}{2}\mathbf{b} \)
   (e) \( 2\mathbf{a} + \mathbf{b} \)
   (f) \( \mathbf{b} - 3\mathbf{a} \)

7. \( \mathbf{a} \)
   \( \mathbf{b} \)

7-12 Find a vector \( \mathbf{a} \) with representation given by the directed line segment \( \overline{AB} \). Draw \( \overline{AB} \) and the equivalent representation starting at the origin.

7. \( A(2, 3), \ B(-2, 1) \)

8. \( A(-2, -2), \ B(5, 3) \)

9. \( A(-1, -1), \ B(-3, 4) \)

10. \( A(-2, 2), \ B(3, 0) \)

11. \( A(0, 3, 1), \ B(2, 3, -1) \)

12. \( A(4, 0, -2), \ B(4, 2, 1) \)

13-16 Find the sum of the given vectors and illustrate geometrically.

13. \( (3, -1), \ (-2, 4) \)

14. \( (-2, -1), \ (5, 7) \)

15. \( (0, 1, 2), \ (0, 0, -3) \)

16. \( (-1, 0, 2), \ (0, 4, 0) \)

17-22 Find \( |\mathbf{a}|, \ \mathbf{a} + \mathbf{b}, \ \mathbf{a} - \mathbf{b}, \ 2\mathbf{a}, \) and \( 3\mathbf{a} + 4\mathbf{b}. \)

17. \( \mathbf{a} = (-4, 3), \ \mathbf{b} = (6, 2) \)

18. \( \mathbf{a} = 2\mathbf{i} - 3\mathbf{j}, \ \mathbf{b} = \mathbf{i} + 5\mathbf{j} \)

19. \( \mathbf{a} = (6, 2, 3), \ \mathbf{b} = (-1, 5, -2) \)

20. \( \mathbf{a} = (-3, -4, -1), \ \mathbf{b} = (6, 2, -3) \)

21. \( \mathbf{a} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}, \ \mathbf{b} = \mathbf{j} + 2\mathbf{k} \)

22. \( \mathbf{a} = 3\mathbf{i} - 2\mathbf{k}, \ \mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k} \)

23-25 Find a unit vector that has the same direction as the given vector.

23. \( (9, -5) \)

24. \( 12\mathbf{i} - 5\mathbf{j} \)

25. \( 8\mathbf{i} - \mathbf{j} + 4\mathbf{k} \)

26. Find a vector that has the same direction as \( (-2, 4, 2) \) but has length 6.

27. If \( \mathbf{v} \) lies in the first quadrant and makes an angle \( \pi/3 \) with the positive \( x \)-axis and \( |\mathbf{v}| = 4 \), find \( \mathbf{v} \) in component form.

28. If a child pulls a sled through the snow with a force of 50 N exerted at an angle of 38° above the horizontal, find the horizontal and vertical components of the force.

29. Two forces \( \mathbf{F}_1 \) and \( \mathbf{F}_2 \) with magnitudes 10 lb and 12 lb act on an object at a point \( P \) as shown in the figure. Find the resultant force \( \mathbf{F} \) acting at \( P \) as well as its magnitude and its direction. (Indicate the direction by finding the angle \( \theta \) shown in the figure.)
30. Velocities have both direction and magnitude and thus are vectors. The magnitude of a velocity vector is called speed. Suppose that a wind is blowing from the direction N45°W at a speed of 50 km/h. (This means that the direction from which the wind blows is 45° west of the northerly direction.) A pilot is steering a plane in the direction N60°E at an airspeed (speed in still air) of 250 km/h. The true course, or track, of the plane is the direction of the resultant of the velocity vectors of the plane and the wind. The ground speed of the plane is the magnitude of the resultant. Find the true course and the ground speed of the plane.

31. A woman walks due west on the deck of a ship at 3 mi/h. The ship is moving north at a speed of 22 mi/h. Find the speed and direction of the woman relative to the surface of the water.

32. Ropes 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg. The ropes, fastened at different heights, make angles of 52° and 40° with the horizontal. Find the tension in each wire and the magnitude of each tension.

33. A clothesline is tied between two poles, 8 m apart. The line is quite taut and has negligible sag. When a wet shirt with a mass of 0.8 kg is hung at the middle of the line, the midpoint is pulled down 8 cm. Find the tension in each half of the clothesline.

34. The tension T at each end of the chain has magnitude 25 N. What is the weight of the chain?

35. If \( A, B, \) and \( C \) are the vertices of a triangle, find \( \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} \).

36. Let \( C \) be the point on the line segment \( AB \) that is twice as far from \( B \) as it is from \( A \). If \( \mathbf{a} = \overrightarrow{OA}, \mathbf{b} = \overrightarrow{OB}, \) and \( \mathbf{c} = \overrightarrow{OC} \), show that \( \mathbf{c} = \frac{1}{3} \mathbf{a} + \frac{2}{3} \mathbf{b} \).

37. (a) Draw the vectors \( \mathbf{a} = \langle 3, 2 \rangle, \mathbf{b} = \langle 2, -1 \rangle, \) and \( \mathbf{c} = \langle 7, 1 \rangle \). (b) Show, by means of a sketch, that there are scalars \( s \) and \( t \) such that \( \mathbf{c} = s \mathbf{a} + t \mathbf{b} \). (c) Use the sketch to estimate the values of \( s \) and \( t \). (d) Find the exact values of \( s \) and \( t \).

38. Suppose that \( \mathbf{a} \) and \( \mathbf{b} \) are nonzero vectors that are not parallel and \( \mathbf{c} \) is any vector in the plane determined by \( \mathbf{a} \) and \( \mathbf{b} \). Give a geometric argument to show that \( \mathbf{c} \) can be written as \( \mathbf{c} = s \mathbf{a} + t \mathbf{b} \) for suitable scalars \( s \) and \( t \). Then give an argument using components.

39. If \( \mathbf{r} = \langle x, y, z \rangle \) and \( \mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle \), describe the set of all points \( (x, y, z) \) such that \( \| \mathbf{r} - \mathbf{r}_0 \| = 1 \).

40. If \( \mathbf{r} = \langle x, y \rangle \), \( \mathbf{r}_1 = \langle x_1, y_1 \rangle \), and \( \mathbf{r}_2 = \langle x_2, y_2 \rangle \), describe the set of all points \( (x, y) \) such that \( \| \mathbf{r} - \mathbf{r}_1 \| + \| \mathbf{r} - \mathbf{r}_2 \| = k \), where \( k > \| \mathbf{r}_1 - \mathbf{r}_2 \| \).

41. Figure 16 gives a geometric demonstration of Property 2 of vectors. Use components to give an algebraic proof of this fact for the case \( n = 2 \).

42. Prove Property 5 of vectors algebraically for the case \( n = 3 \). Then use similar triangles to give a geometric proof.

43. Use vectors to prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and half its length.

44. Suppose the three coordinate planes are all mirrored and a light ray given by the vector \( \mathbf{a} = \langle a_1, a_2, a_3 \rangle \) first strikes the \( xy \)-plane, as shown in the figure. Use the fact that the angle of incidence equals the angle of reflection to show that the direction of the reflected ray is given by \( \mathbf{b} = \langle a_1, -a_2, a_3 \rangle \). Deduce that, after being reflected by all three mutually perpendicular mirrors, the resulting ray is parallel to the initial ray. (American space scientists used this principle, together with laser beams and an array of corner mirrors on the Moon, to calculate very precisely the distance from the Earth to the Moon.)
So far we have added two vectors and multiplied a vector by a scalar. The question arises: Is it possible to multiply two vectors so that their product is a useful quantity? One such product is the dot product, whose definition follows. Another is the cross product, which is discussed in the next section.

**Definition** If \( \mathbf{a} = \langle a_1, a_2, a_3 \rangle \) and \( \mathbf{b} = \langle b_1, b_2, b_3 \rangle \), then the dot product of \( \mathbf{a} \) and \( \mathbf{b} \) is the number \( \mathbf{a} \cdot \mathbf{b} \) given by

\[
\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3
\]

Thus, to find the dot product of \( \mathbf{a} \) and \( \mathbf{b} \) we multiply corresponding components and add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot product is sometimes called the **scalar product** (or **inner product**). Although Definition 1 is given for three-dimensional vectors, the dot product of two-dimensional vectors is defined in a similar fashion:

\[
\langle a_1, a_2 \rangle \cdot \langle b_1, b_2 \rangle = a_1b_1 + a_2b_2
\]

**Example 1**

\[
\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle = 2(3) + 4(-1) = 2 \\
\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -\frac{1}{2} \rangle = (-1)(6) + 7(2) + 4\left(-\frac{1}{2}\right) = 6 \\
(i + 2j - 3k) \cdot (2j - k) = 1(0) + 2(2) + (-3)(-1) = 7
\]

The dot product obeys many of the laws that hold for ordinary products of real numbers. These are stated in the following theorem.

**Properties of the Dot Product** If \( \mathbf{a}, \mathbf{b}, \) and \( \mathbf{c} \) are vectors in \( \mathbb{V}_3 \) and \( c \) is a scalar, then

1. \( \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \)
2. \( \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} \)
3. \( \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} \)
4. \( (ca) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (cb) \)
5. \( \mathbf{0} \cdot \mathbf{a} = 0 \)

These properties are easily proved using Definition 1. For instance, here are the proofs of Properties 1 and 3:

1. \( \mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2 = |\mathbf{a}|^2 \)
3. \( \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \langle a_1, a_2, a_3 \rangle \cdot (b_1 + c_1, b_2 + c_2, b_3 + c_3) = a_1(b_1 + c_1) + a_2(b_2 + c_2) + a_3(b_3 + c_3) = a_1b_1 + a_1c_1 + a_2b_2 + a_2c_2 + a_3b_3 + a_3c_3 = (a_1b_1 + a_2b_2 + a_3b_3) + (a_1c_1 + a_2c_2 + a_3c_3) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} \)

The proofs of the remaining properties are left as exercises.

The dot product \( \mathbf{a} \cdot \mathbf{b} \) can be given a geometric interpretation in terms of the **angle** \( \theta \) **between** \( \mathbf{a} \) **and** \( \mathbf{b} \), which is defined to be the angle between the representations of \( \mathbf{a} \) and \( \mathbf{b} \) that start at the origin, where \( 0 \leq \theta \leq \pi \). In other words, \( \theta \) is the angle between the
line segments $\vec{OA}$ and $\vec{OB}$ in Figure 1. Note that if $\mathbf{a}$ and $\mathbf{b}$ are parallel vectors, then $\theta = 0$ or $\theta = \pi$.

The formula in the following theorem is used by physicists as the definition of the dot product.

**Theorem** If $\theta$ is the angle between the vectors $\mathbf{a}$ and $\mathbf{b}$, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

**Proof** If we apply the Law of Cosines to triangle $OAB$ in Figure 1, we get

$$|AB|^2 = |OA|^2 + |OB|^2 - 2 |OA| |OB| \cos \theta$$

(Observe that the Law of Cosines still applies in the limiting cases when $\theta = 0$ or $\pi$, or $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$.) But $|OA| = |\mathbf{a}|$, $|OB| = |\mathbf{b}|$, and $|AB| = |\mathbf{a} - \mathbf{b}|$, so Equation 4 becomes

$$|\mathbf{a} - \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this equation as follows:

$$|\mathbf{a} - \mathbf{b}|^2 = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b})$$

$$= \mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b}$$

$$= |\mathbf{a}|^2 - 2 \mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2$$

Therefore, Equation 5 gives

$$|\mathbf{a}|^2 - 2 \mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Thus

$$-2 \mathbf{a} \cdot \mathbf{b} = -2 |\mathbf{a}| |\mathbf{b}| \cos \theta$$

or

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

**Example 2** If the vectors $\mathbf{a}$ and $\mathbf{b}$ have lengths 4 and 6, and the angle between them is $\pi/3$, find $\mathbf{a} \cdot \mathbf{b}$.

**Solution** Using Theorem 3, we have

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\pi/3) = 4 \cdot 6 \cdot \frac{1}{2} = 12$$

The formula in Theorem 3 also enables us to find the angle between two vectors.

**Corollary** If $\theta$ is the angle between the nonzero vectors $\mathbf{a}$ and $\mathbf{b}$, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

**Example 3** Find the angle between the vectors $\mathbf{a} = (2, 2, -1)$ and $\mathbf{b} = (5, -3, 2)$.

**Solution** Since

$$|\mathbf{a}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3 \quad \text{and} \quad |\mathbf{b}| = \sqrt{5^2 + (-3)^2 + 2^2} = \sqrt{38}$$
and since
\[ \mathbf{a} \cdot \mathbf{b} = 2(5) + 2(-3) + (-1)(2) = 2 \]

we have, from Corollary 6,
\[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \cdot ||\mathbf{b}||} = \frac{2}{3\sqrt{38}} \]

So the angle between \( \mathbf{a} \) and \( \mathbf{b} \) is
\[ \theta = \cos^{-1}\left(\frac{2}{3\sqrt{38}}\right) \approx 1.46 \quad \text{(or 84°)} \]

Two nonzero vectors \( \mathbf{a} \) and \( \mathbf{b} \) are called **perpendicular** or **orthogonal** if the angle between them is \( \theta = \pi/2 \). Then Theorem 3 gives
\[ \mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \cos(\pi/2) = 0 \]

and conversely if \( \mathbf{a} \cdot \mathbf{b} = 0 \), then \( \cos \theta = 0 \), so \( \theta = \pi/2 \). The zero vector \( \mathbf{0} \) is considered to be perpendicular to all vectors. Therefore, we have the following method for determining whether two vectors are orthogonal.

Two vectors \( \mathbf{a} \) and \( \mathbf{b} \) are orthogonal if and only if \( \mathbf{a} \cdot \mathbf{b} = 0 \).

**EXAMPLE 4** Show that \( 2\mathbf{i} + 2\mathbf{j} - \mathbf{k} \) is perpendicular to \( 5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k} \).

**SOLUTION** Since
\[ (2\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \cdot (5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 2(5) + 2(-4) + (-1)(2) = 0 \]

these vectors are perpendicular by (7).

Because \( \cos \theta > 0 \) if \( 0 \leq \theta < \pi/2 \) and \( \cos \theta < 0 \) if \( \pi/2 < \theta < \pi \), we see that \( \mathbf{a} \cdot \mathbf{b} \) is positive for \( \theta < \pi/2 \) and negative for \( \theta > \pi/2 \). We can think of \( \mathbf{a} \cdot \mathbf{b} \) as measuring the extent to which \( \mathbf{a} \) and \( \mathbf{b} \) point in the same direction. The dot product \( \mathbf{a} \cdot \mathbf{b} \) is positive if \( \mathbf{a} \) and \( \mathbf{b} \) point in the same general direction, 0 if they are perpendicular, and negative if they point in generally opposite directions (see Figure 2). In the extreme case where \( \mathbf{a} \) and \( \mathbf{b} \) point in exactly the same direction, we have \( \theta = 0 \), so \( \cos \theta = 1 \) and
\[ \mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \]

If \( \mathbf{a} \) and \( \mathbf{b} \) point in exactly opposite directions, then \( \theta = \pi \) and so \( \cos \theta = -1 \) and
\[ \mathbf{a} \cdot \mathbf{b} = -||\mathbf{a}|| \cdot ||\mathbf{b}|| \].

### Direction Angles and Direction Cosines

The **direction angles** of a nonzero vector \( \mathbf{a} \) are the angles \( \alpha \), \( \beta \), and \( \gamma \) (in the interval \( [0, \pi] \)) that \( \mathbf{a} \) makes with the positive \( x \)-, \( y \)-, and \( z \)-axes (see Figure 3 on page 810).

The cosines of these direction angles, \( \cos \alpha \), \( \cos \beta \), and \( \cos \gamma \), are called the **direction cosines** of the vector \( \mathbf{a} \). Using Corollary 6 with \( \mathbf{b} \) replaced by \( \mathbf{i} \), we obtain
\[ \cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{||\mathbf{a}|| \cdot ||\mathbf{i}||} = \frac{a_i}{||\mathbf{a}||} \]
(This can also be seen directly from Figure 3.) Similarly, we also have

\[
\cos \beta = \frac{a_2}{|\mathbf{a}|} \quad \cos \gamma = \frac{a_3}{|\mathbf{a}|}
\]

By squaring the expressions in Equations 8 and 9 and adding, we see that

\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1
\]

We can also use Equations 8 and 9 to write

\[
\mathbf{a} = (a_1, a_2, a_3) = (|\mathbf{a}| \cos \alpha, |\mathbf{a}| \cos \beta, |\mathbf{a}| \cos \gamma)
\]

Therefore

\[
\frac{1}{|\mathbf{a}|} \mathbf{a} = (\cos \alpha, \cos \beta, \cos \gamma)
\]

which says that the direction cosines of \( \mathbf{a} \) are the components of the unit vector in the direction of \( \mathbf{a} \).

**EXAMPLE 5** Find the direction angles of the vector \( \mathbf{a} = (1, 2, 3) \).

**SOLUTION** Since \( |\mathbf{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} \), Equations 8 and 9 give

\[
\cos \alpha = \frac{1}{\sqrt{14}} \quad \cos \beta = \frac{2}{\sqrt{14}} \quad \cos \gamma = \frac{3}{\sqrt{14}}
\]

and so

\[
\alpha = \cos^{-1} \left( \frac{1}{\sqrt{14}} \right) \approx 74^\circ \quad \beta = \cos^{-1} \left( \frac{2}{\sqrt{14}} \right) \approx 58^\circ \quad \gamma = \cos^{-1} \left( \frac{3}{\sqrt{14}} \right) \approx 37^\circ
\]

### Projections

Figure 4 shows representations \( \overrightarrow{PQ} \) and \( \overrightarrow{PR} \) of two vectors \( \mathbf{a} \) and \( \mathbf{b} \) with the same initial point \( P \). If \( S \) is the foot of the perpendicular from \( R \) to the line containing \( \overrightarrow{PQ} \), then the vector with representation \( \overrightarrow{PS} \) is called the vector projection of \( \mathbf{b} \) onto \( \mathbf{a} \) and is denoted by \( \text{proj}_a \mathbf{b} \).

The scalar projection of \( \mathbf{b} \) onto \( \mathbf{a} \) (also called the component of \( \mathbf{b} \) along \( \mathbf{a} \)) is defined to be the magnitude of the vector projection, which is the number \( |\mathbf{b}| \cos \theta \), where \( \theta \) is the
angle between \( \mathbf{a} \) and \( \mathbf{b} \). (See Figure 5; you can think of the scalar projection of \( \mathbf{b} \) as being the length of a shadow of \( \mathbf{b} \).) This is denoted by \( \text{comp}_a \mathbf{b} \). Observe that it is negative if \( \pi/2 < \theta \leq \pi \). The equation

\[
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{a}| (|\mathbf{b}| \cos \theta)
\]

shows that the dot product of \( \mathbf{a} \) and \( \mathbf{b} \) can be interpreted as the length of \( \mathbf{a} \) times the scalar projection of \( \mathbf{b} \) onto \( \mathbf{a} \). Since

\[
|\mathbf{b}| \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}
\]

the component of \( \mathbf{b} \) along \( \mathbf{a} \) can be computed by taking the dot product of \( \mathbf{b} \) with the unit vector in the direction of \( \mathbf{a} \). We summarize these ideas as follows.

| Scalar projection of \( \mathbf{b} \) onto \( \mathbf{a} \): | \( \text{comp}_a \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} \) |
|---|---|
| Vector projection of \( \mathbf{b} \) onto \( \mathbf{a} \): | \( \text{proj}_a \mathbf{b} = \left( \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} \right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a} \) |

Notice that the vector projection is the scalar projection times the unit vector in the direction of \( \mathbf{a} \).

**EXAMPLE 6** Find the scalar projection and vector projection of \( \mathbf{b} = \langle 1, 1, 2 \rangle \) onto \( \mathbf{a} = \langle -2, 3, 1 \rangle \).

**SOLUTION** Since \( |\mathbf{a}| = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{14} \), the scalar projection of \( \mathbf{b} \) onto \( \mathbf{a} \) is

\[
\text{comp}_a \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{(-2)(1) + 3(1) + 1(2)}{\sqrt{14}} = \frac{3}{\sqrt{14}}
\]

The vector projection is this scalar projection times the unit vector in the direction of \( \mathbf{a} \):

\[
\text{proj}_a \mathbf{b} = \frac{3}{\sqrt{14}} \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{3}{14} \mathbf{a} = \left\langle \frac{-3}{7}, \frac{9}{14}, \frac{3}{14} \right\rangle
\]

One use of projections occurs in physics in calculating work. In Section 6.4 we defined the work done by a constant force \( \mathbf{F} \) in moving an object through a distance \( d \) as \( W = Fd \), but this applies only when the force is directed along the line of motion of the object. Suppose, however, that the constant force is a vector \( \mathbf{F} = \overrightarrow{PR} \) pointing in some other direction as in Figure 6. If the force moves the object from \( P \) to \( Q \), then the displacement vector is \( \mathbf{D} = \overrightarrow{PQ} \). The work done by this force is defined to be the product of the component of the force along \( \mathbf{D} \) and the distance moved:

\[
W = (|\mathbf{F}| \cos \theta) |\mathbf{D}|
\]

But then, from Theorem 3, we have

\[
W = |\mathbf{F}| |\mathbf{D}| \cos \theta = \mathbf{F} \cdot \mathbf{D}
\]
Thus, the work done by a constant force $\mathbf{F}$ is the dot product $\mathbf{F} \cdot \mathbf{D}$, where $\mathbf{D}$ is the displacement vector.

**Example 7** A crate is hauled 8 m up a ramp under a constant force of 200 N applied at an angle of $25^\circ$ to the ramp. Find the work done.

**Solution** If $\mathbf{F}$ and $\mathbf{D}$ are the force and displacement vectors, as pictured in Figure 7, then the work done is

$$W = \mathbf{F} \cdot \mathbf{D} = |\mathbf{F}| \cdot |\mathbf{D}| \cdot \cos 25^\circ$$

$$= (200)(8) \cos 25^\circ \approx 1450 \text{ N} \cdot \text{m} = 1450 \text{ J}$$

**Example 8** A force is given by a vector $\mathbf{F} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ and moves a particle from the point $P(2, 1, 0)$ to the point $Q(4, 6, 2)$. Find the work done.

**Solution** The displacement vector is $\mathbf{D} = \overrightarrow{PQ} = (2, 5, 2)$, so by Equation 12, the work done is

$$W = \mathbf{F} \cdot \mathbf{D} = (3, 4, 5) \cdot (2, 5, 2)$$

$$= 6 + 20 + 10 = 36$$

If the unit of length is meters and the magnitude of the force is measured in newtons, then the work done is 36 joules.

### 12.3 Exercises

1. Which of the following expressions are meaningful? Which are meaningless? Explain.
   (a) $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$
   (b) $(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$
   (c) $|\mathbf{a}| (\mathbf{b} \cdot \mathbf{c})$
   (d) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$
   (e) $\mathbf{a} \cdot \mathbf{b} + \mathbf{c}$
   (f) $|\mathbf{a}| \cdot (\mathbf{b} + \mathbf{c})$

2. Find the dot product of two vectors if their lengths are 6 and 7 and the angle between them is $\pi/4$.

3-10 Find $\mathbf{a} \cdot \mathbf{b}$.
   3. $\mathbf{a} = (4, -1), \quad \mathbf{b} = (3, 6)$
   4. $\mathbf{a} = (\frac{1}{2}, 4), \quad \mathbf{b} = (-8, -3)$
   5. $\mathbf{a} = (5, 0, -2), \quad \mathbf{b} = (3, -1, 10)$
   6. $\mathbf{a} = (s, 2s, 3s), \quad \mathbf{b} = (t, -t, 5t)$
   7. $\mathbf{a} = i - 2j + 3k, \quad \mathbf{b} = 5i + 9k$
   8. $\mathbf{a} = 4j - 3k, \quad \mathbf{b} = 2i + 4j + 6k$
   9. $|\mathbf{a}| = 12, \quad |\mathbf{b}| = 15, \quad$ the angle between $\mathbf{a}$ and $\mathbf{b}$ is $\pi/6$
   10. $|\mathbf{a}| = 4, \quad |\mathbf{b}| = 10, \quad$ the angle between $\mathbf{a}$ and $\mathbf{b}$ is $120^\circ$

11-12 If $\mathbf{u}$ is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$.

11. [Diagram of a triangle with vectors $\mathbf{u}$, $\mathbf{v}$, and $\mathbf{w}$]

12. [Diagram of a cross with vectors $\mathbf{u}$, $\mathbf{v}$, and $\mathbf{w}$]

13. (a) Show that $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$.
   (b) Show that $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$.

14. A street vendor sells a hamburgers, $b$ hot dogs, and $c$ soft drinks on a given day. He charges $2 for a hamburger, $1.50 for a hot dog, and $1 for a soft drink. If $\mathbf{A} = (a, b, c)$ and $\mathbf{P} = (2, 1.5, 1)$, what is the meaning of the dot product $\mathbf{A} \cdot \mathbf{P}$?

15-20 Find the angle between the vectors. (First find an exact expression and then approximate to the nearest degree.)
   15. $\mathbf{a} = (3, 4), \quad \mathbf{b} = (5, 12)$
   16. $\mathbf{a} = (\sqrt{3}, 1), \quad \mathbf{b} = (0, 5)$

   35-40

   a

   36.
(1, 2, 3), \( \mathbf{b} = \langle 4, 0, -1 \rangle \)

(6, -3, 2), \( \mathbf{b} = \langle 2, 1, -2 \rangle \)

\( j + k, \quad \mathbf{b} = i + 2j - 3k \)

\( 2i - j + k, \quad \mathbf{b} = 3i + 2j - k \)

37. \( \mathbf{a} = \langle 4, 2, 0 \rangle, \quad \mathbf{b} = \langle 1, 1, 1 \rangle \)

38. \( \mathbf{a} = \langle -1, -2, 2 \rangle, \quad \mathbf{b} = \langle 3, 3, 4 \rangle \)

39. \( \mathbf{a} = i + k, \quad \mathbf{b} = i - j \)

40. \( \mathbf{a} = 2i - 3j + k, \quad \mathbf{b} = i + 6j - 2k \)

41. Show that the vector ortho \( \mathbf{b} = \mathbf{b} - \text{proj}_\mathbf{a} \mathbf{b} \) is orthogonal to \( \mathbf{a} \).

(It is called an orthogonal projection of \( \mathbf{b} \).)

42. For the vectors in Exercise 36, find ortho \( \mathbf{b} \) and illustrate by drawing the vectors \( \mathbf{a}, \mathbf{b}, \text{proj}_\mathbf{a} \mathbf{b}, \) and ortho \( \mathbf{b}. \)

43. If \( \mathbf{a} = \langle 3, 0, -1 \rangle \), find a vector \( \mathbf{b} \) such that \( \text{comp}_\mathbf{a} \mathbf{b} = 2 \).

44. Suppose that \( \mathbf{a} \) and \( \mathbf{b} \) are nonzero vectors.

(a) Under what circumstances is \( \text{comp}_\mathbf{a} \mathbf{b} = \text{comp}_\mathbf{b} \mathbf{a} \)?

(b) Under what circumstances is \( \text{proj}_\mathbf{a} \mathbf{b} = \text{proj}_\mathbf{b} \mathbf{a} \)?

45. A constant force with vector representation \( \mathbf{F} = 104 + 18j - 6k \) moves an object along a straight line from the point \( (2, 3, 0) \) to the point \( (4, 9, 15) \). Find the work done if the distance is measured in meters and the magnitude of the force is measured in newtons.

46. Find the work done by a force of 20 lb acting in the direction N50°W in moving an object 4 ft due west.

47. A woman exerts a horizontal force of 25 lb on a crate as she pushes it up a ramp that is 10 ft long and inclined at an angle of 20° above the horizontal. Find the work done on the box.

48. A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 50 N. The handle of the wagon is held at an angle of 30° above the horizontal. How much work is done?

49. Use a scalar projection to show that the distance from a point \( P_1(x_1, y_1) \) to the line \( ax + by + c = 0 \) is

\[
\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}
\]

Use this formula to find the distance from the point \( (-2, 3) \) to the line \( 3x - 4y + 5 = 0 \).

50. If \( \mathbf{r} = \langle x, y, z \rangle, \mathbf{a} = \langle a_1, a_2, a_3 \rangle, \) and \( \mathbf{b} = \langle b_1, b_2, b_3 \rangle, \) show that the vector equation \( (\mathbf{r} - \mathbf{a}) \cdot (\mathbf{r} - \mathbf{b}) = 0 \) represents a sphere, and find its center and radius.

51. Find the angle between a diagonal of a cube and one of its edges.

52. Find the angle between a diagonal of a cube and a diagonal of one of its faces.

53. A molecule of methane, \( \text{CH}_4 \), is structured with the four hydrogen atoms at the vertices of a regular tetrahedron and the carbon atom at the centroid. The bond angle is the angle formed by the \( \text{H} - \text{C} - \text{H} \) combination; it is the angle between the lines that join the carbon atom to two of the hydrogen atoms. Show that the bond angle is about 109.5°. [Hint: Take the vertices of the tetrahedron to be the points \( (1, 0, 0), (0, 1, 0) \), \( (0, 0, 1) \), and \( (0, 1, 0) \).]
(0, 0, 1), and (1, 1, 1) as shown in the figure. Then the centroid is \((\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\).

54. If \(c = |a| + |b|\), where \(a\), \(b\), and \(c\) are all nonzero vectors, show that \(c\) bisects the angle between \(a\) and \(b\).

55. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

56. Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.

57. Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

\[ |a \cdot b| \leq |a||b| \]

58. The Triangle Inequality for vectors is

\[ |a + b| \leq |a| + |b| \]

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 57 to prove the Triangle Inequality. \([Hint: Use the fact that |a + b|^2 = (a + b) \cdot (a + b)\) and use Property 3 of the dot product.]

59. The Parallelogram Law states that

\[ |a + b|^2 + |a - b|^2 = 2|a|^2 + 2|b|^2 \]

(a) Give a geometric interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law. \(\text{See the hint in Exercise 58.}\)

12.4 The Cross Product

The **cross product** \(a \times b\) of two vectors \(a\) and \(b\), unlike the dot product, is a vector. For this reason it is also called the **vector product**. Note that \(a \times b\) is defined only when \(a\) and \(b\) are **three-dimensional** vectors.

**Definition** If \(a = (a_1, a_2, a_3)\) and \(b = (b_1, b_2, b_3)\), then the **cross product** of \(a\) and \(b\) is the vector

\[ a \times b = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1) \]

This may seem like a strange way of defining a product. The reason for the particular form of Definition 1 is that the cross product defined in this way has many useful properties, as we will soon see. In particular, we will show that the vector \(a \times b\) is perpendicular to both \(a\) and \(b\).

In order to make Definition 1 easier to remember, we use the notation of determinants. A **determinant of order 2** is defined by

\[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \]

For example,

\[ \begin{vmatrix} 2 & 1 \\ -6 & 4 \end{vmatrix} = 2(4) - 1(-6) = 14 \]

A **determinant of order 3** can be defined in terms of second-order determinants as follows:

\[ \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} \]
Observe that each term on the right side of Equation 2 involves a number \( a_i \) in the first row of the determinant, and \( a_i \) is multiplied by the second-order determinant obtained from the left side by deleting the row and column in which \( a_i \) appears. Notice also the minus sign in the second term. For example,

\[
\begin{vmatrix}
3 & 0 & 4 \\
0 & 1 & 2 \\
1 & 0 & -2
\end{vmatrix} = 1 \begin{vmatrix} 1 & 2 & -1 \\ 3 & 0 & 4 \\ -5 & 4 & 2 \end{vmatrix} - 2 \begin{vmatrix} 0 & 1 & 3 \\ 4 & 2 & -5 \\ -5 & 4 & 2 \end{vmatrix} + (-1) \begin{vmatrix} 0 & 1 & 3 \\ 3 & 0 & -5 \\ -5 & 4 & 2 \end{vmatrix} = 1(0 - 4) - 2(6 + 5) + (-1)(12 - 0) = -38
\]

If we now rewrite Definition 1 using second-order determinants and the standard basis vectors \( \mathbf{i}, \mathbf{j}, \) and \( \mathbf{k}, \) we see that the cross product of the vectors \( \mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \) and \( \mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k} \) is

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}
\]

In view of the similarity between Equations 2 and 3, we often write

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}
\]

Although the first row of the symbolic determinant in Equation 4 consists of vectors, if we expand it as if it were an ordinary determinant using the rule in Equation 2, we obtain Equation 3. The symbolic formula in Equation 4 is probably the easiest way of remembering and computing cross products.

**EXAMPLE 1** If \( \mathbf{a} = \langle 1, 3, 4 \rangle \) and \( \mathbf{b} = \langle 2, 7, -5 \rangle, \) then

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix} = \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k} = (-15 - 28) \mathbf{i} - (-5 - 8) \mathbf{j} + (7 - 6) \mathbf{k} = -43 \mathbf{i} + 13 \mathbf{j} + \mathbf{k}
\]

**EXAMPLE 2** Show that \( \mathbf{a} \times \mathbf{a} = \mathbf{0} \) for any vector \( \mathbf{a} \) in \( V_3. \)

**SOLUTION** If \( \mathbf{a} = \langle a_1, a_2, a_3 \rangle, \) then

\[
\mathbf{a} \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = (a_2a_3 - a_3a_2) \mathbf{i} - (a_1a_3 - a_3a_1) \mathbf{j} + (a_1a_2 - a_2a_1) \mathbf{k} = 0 \mathbf{i} - 0 \mathbf{j} + 0 \mathbf{k} = \mathbf{0}
\]
One of the most important properties of the cross product is given by the following theorem.

5. **Theorem** The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both $\mathbf{a}$ and $\mathbf{b}$.

**Proof** In order to show that $\mathbf{a} \times \mathbf{b}$ is orthogonal to $\mathbf{a}$, we compute their dot product as follows:

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} a_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} a_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} a_3
$$

$$
= a_1(a_2b_3 - a_3b_2) - a_2(a_1b_3 - a_3b_1) + a_3(a_1b_2 - a_2b_1)
$$

$$
= a_1a_2b_3 - a_1a_3b_2 - a_2a_1b_3 + a_2a_3b_1 + a_3a_1b_2 - a_3a_2b_1
$$

$$
= 0
$$

A similar computation shows that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$. Therefore, $\mathbf{a} \times \mathbf{b}$ is orthogonal to both $\mathbf{a}$ and $\mathbf{b}$.

If $\mathbf{a}$ and $\mathbf{b}$ are represented by directed line segments with the same initial point (as in Figure 1), then Theorem 5 says that the cross product $\mathbf{a} \times \mathbf{b}$ points in a direction perpendicular to the plane through $\mathbf{a}$ and $\mathbf{b}$. It turns out that the direction of $\mathbf{a} \times \mathbf{b}$ is given by the right-hand rule: If the fingers of your right hand curl in the direction of a rotation (through an angle less than 180°) from $\mathbf{a}$ to $\mathbf{b}$, then your thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

Now that we know the direction of the vector $\mathbf{a} \times \mathbf{b}$, the remaining thing we need to complete its geometric description is its length $|\mathbf{a} \times \mathbf{b}|$. This is given by the following theorem.

6. **Theorem** If $\theta$ is the angle between $\mathbf{a}$ and $\mathbf{b}$ (so $0 \leq \theta \leq \pi$), then

$$
|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta.
$$

**Proof** From the definitions of the cross product and length of a vector, we have

$$
|\mathbf{a} \times \mathbf{b}|^2 = (a_2b_1 - a_1b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2
$$

$$
= a_1^2b_2^2 + a_2^2b_3^2 + a_3^2b_1^2 - 2a_1a_2b_2b_3 + 2a_1a_3b_2b_1 + 2a_2a_3b_1b_3
$$

$$
+ a_1^2b_2^2 - 2a_1a_2b_2b_3 + a_2^2b_3^2
$$

$$
= (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2
$$

$$
= |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2
$$

$$
= |\mathbf{a}|^2 |\mathbf{b}|^2 - |\mathbf{a}|^2 |\mathbf{b}|^2 \cos^2 \theta \quad \text{(by Theorem 12.3.3)}
$$

$$
= |\mathbf{a}|^2 |\mathbf{b}|^2 \cos^2 \theta
$$

$$
= |\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \theta
$$

Taking square roots and observing that $\sqrt{\sin^2 \theta} = \sin \theta$ because $\sin \theta \geq 0$ when $0 \leq \theta \leq \pi$, we have

$$
|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta
$$

Since a vector is completely determined by its magnitude and direction, we can now say that $\mathbf{a} \times \mathbf{b}$ is the vector that is perpendicular to both $\mathbf{a}$ and $\mathbf{b}$, whose orientation is deter-
minded by the right-hand rule, and whose length is \( |a| \cdot |b| \cdot \sin \theta \). In fact, that is exactly how physicists define \( a \times b \).

**Corollary** Two nonzero vectors \( a \) and \( b \) are parallel if and only if

\[
a \times b = 0
\]

**Proof** Two nonzero vectors \( a \) and \( b \) are parallel if and only if \( \theta = 0 \) or \( \pi \). In either case \( \sin \theta = 0 \), so \( |a \times b| = 0 \) and therefore \( a \times b = 0 \).

The geometric interpretation of Theorem 6 can be seen by looking at Figure 2. If \( a \) and \( b \) are represented by directed line segments with the same initial point, then they determine a parallelogram with base \( |a| \), altitude \( |b| \cdot \sin \theta \), and area

\[
A = |a|(|b| \cdot \sin \theta) = |a \times b|
\]

Thus, we have the following way of interpreting the magnitude of a cross product.

The length of the cross product \( a \times b \) is equal to the area of the parallelogram determined by \( a \) and \( b \).

**Example 3** Find a vector perpendicular to the plane that passes through the points \( P(1, 4, 6) \), \( Q(-2, 5, -1) \), and \( R(1, -1, 1) \).

**Solution** The vector \( \overrightarrow{PQ} \times \overrightarrow{PR} \) is perpendicular to both \( \overrightarrow{PQ} \) and \( \overrightarrow{PR} \) and is therefore perpendicular to the plane through \( P \), \( Q \), and \( R \). We know from (12.2.1) that

\[
\overrightarrow{PQ} = (-2 - 1)i + (5 - 4)j + (-1 - 6)k = -3i + j - 7k
\]

\[
\overrightarrow{PR} = (1 - 1)i + (-1 - 4)j + (1 - 6)k = -5j - 5k
\]

We compute the cross product of these vectors:

\[
\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} i & j & k \\ -3 & 1 & -7 \\ 0 & -5 & -5 \end{vmatrix} = (-5 - 35)i - (15 - 0)j + (15 - 0)k = -40i - 15j + 15k
\]

So the vector \((-40, -15, 15)\) is perpendicular to the given plane. Any nonzero scalar multiple of this vector, such as \((-8, -3, 3)\), is also perpendicular to the plane.

**Example 4** Find the area of the triangle with vertices \( P(1, 4, 6) \), \( Q(-2, 5, -1) \), and \( R(1, -1, 1) \).

**Solution** In Example 3 we computed that \( \overrightarrow{PQ} \times \overrightarrow{PR} = (-40, -15, 15) \). The area of the parallelogram with adjacent sides \( PQ \) and \( PR \) is the length of this cross product:

\[
|\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{(-40)^2 + (-15)^2 + 15^2} = 5\sqrt{82}
\]

The area \( A \) of the triangle \( PQR \) is half the area of this parallelogram, that is, \( \frac{5}{2} \sqrt{82} \).
If we apply Theorems 5 and 6 to the standard basis vectors \( i, j, \) and \( k \) using \( \theta = \pi/2 \), we obtain
\[
\begin{align*}
i \times j &= k & j \times k &= i & k \times i &= j \\
j \times i &= -k & k \times j &= -i & i \times k &= -j
\end{align*}
\]
Observe that
\[
i \times j \neq j \times i
\]
Thus, the cross product is not commutative. Also
\[
i \times (i \times j) = i \times k = -j
\]
whereas
\[
(i \times i) \times j = 0 \times j = 0
\]
So the associative law for multiplication does not usually hold; that is, in general,
\[
(a \times b) \times c \neq a \times (b \times c)
\]
However, some of the usual laws of algebra do hold for cross products. The following theorem summarizes the properties of vector products.

**Theorem** If \( a, b, \) and \( c \) are vectors and \( c \) is a scalar, then
1. \( a \times b = -b \times a \)
2. \( (ca) \times b = c(a \times b) = a \times (cb) \)
3. \( a \times (b + c) = a \times b + a \times c \)
4. \( (a + b) \times c = a \times c + b \times c \)
5. \( a \cdot (b \times c) = (a \times b) \cdot c \)
6. \( a \times (b \times c) = (a \cdot c)b - (a \cdot b)c \)

These properties can be proved by writing the vectors in terms of their components and using the definition of a cross product. We give the proof of Property 5 and leave the remaining proofs as exercises.

**Proof of Property 5** If \( a = (a_1, a_2, a_3), b = (b_1, b_2, b_3), \) and \( c = (c_1, c_2, c_3) \), then
\[
\begin{align*}
a \cdot (b \times c) &= a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1) \\
&= a_1b_2c_3 - a_1b_3c_2 + a_2b_3c_1 - a_2b_1c_3 + a_3b_1c_2 - a_3b_2c_1 \\
&= (a_2b_3 - a_3b_2)c_1 + (a_3b_1 - a_1b_3)c_2 + (a_1b_2 - a_2b_1)c_3 \\
&= (a \times b) \cdot c
\end{align*}
\]
The product \( a \cdot (b \times c) \) that occurs in Property 5 is called the **scalar triple product** of the vectors \( a, b, \) and \( c \). Notice from Equation 9 that we can write the scalar triple product as a determinant:
\[
a \cdot (b \times c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}
\]
The geometric significance of the scalar triple product can be seen by considering the parallelepiped determined by the vectors \( \mathbf{a}, \mathbf{b}, \text{ and } \mathbf{c} \) (Figure 3). The area of the base parallelogram is \( A = | \mathbf{b} \times \mathbf{c} | \). If \( \theta \) is the angle between \( \mathbf{a} \) and \( \mathbf{b} \times \mathbf{c} \), then the height \( h \) of the parallelepiped is \( h = | \mathbf{a} | \cos \theta \). (We must use \( | \cos \theta | \) instead of \( \cos \theta \) in case \( \theta > \pi/2 \).) Therefore, the volume of the parallelepiped is

\[
V = Ah = | \mathbf{b} \times \mathbf{c} | | \mathbf{a} | | \cos \theta | = | \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) |
\]

Thus, we have proved the following formula.

The volume of the parallelepiped determined by the vectors \( \mathbf{a}, \mathbf{b}, \text{ and } \mathbf{c} \) is the magnitude of their scalar triple product:

\[
V = | \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) |
\]

If we use the formula in (11) and discover that the volume of the parallelepiped determined by \( \mathbf{a}, \mathbf{b}, \text{ and } \mathbf{c} \) is 0, then the vectors must lie in the same plane; that is, they are coplanar.

**Example 5** Use the scalar triple product to show that the vectors \( \mathbf{a} = (1, 4, -7), \mathbf{b} = (2, -1, 4), \text{ and } \mathbf{c} = (0, -9, 18) \) are coplanar.

**Solution** We use Equation 10 to compute their scalar triple product:

\[
\begin{vmatrix}
1 & 4 & -7 \\
2 & -1 & 4 \\
0 & -9 & 18
\end{vmatrix}
\]

\[
= 1 \begin{vmatrix}
-1 & 4 \\
-9 & 18
\end{vmatrix} - 4 \begin{vmatrix}
2 & 4 \\
0 & 18
\end{vmatrix} - 7 \begin{vmatrix}
2 & -1 \\
0 & -9
\end{vmatrix}
\]

\[
= 1(18) - 4(36) - 7(-18) = 0
\]

Therefore, by (11) the volume of the parallelepiped determined by \( \mathbf{a}, \mathbf{b}, \text{ and } \mathbf{c} \) is 0. This means that \( \mathbf{a}, \mathbf{b}, \text{ and } \mathbf{c} \) are coplanar.

The idea of a cross product occurs often in physics. In particular, we consider a force \( \mathbf{F} \) acting on a rigid body at a point given by a position vector \( \mathbf{r} \). (For instance, if we tighten a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.) The torque \( \tau \) (relative to the origin) is defined to be the cross product of the position and force vectors

\[
\tau = \mathbf{r} \times \mathbf{F}
\]

and measures the tendency of the body to rotate about the origin. The direction of the torque vector indicates the axis of rotation. According to Theorem 6, the magnitude of the torque vector is

\[
|\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}| |\mathbf{F}| |\sin \theta|
\]

where \( \theta \) is the angle between the position and force vectors. Observe that the only component of \( \mathbf{F} \) that can cause a rotation is the one perpendicular to \( \mathbf{r} \), that is, \( |\mathbf{F}| \sin \theta \). The magnitude of the torque is equal to the area of the parallelogram determined by \( \mathbf{r} \) and \( \mathbf{F} \).
EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

\[ |\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}| |\mathbf{F}| \sin 75^\circ = (0.25)(40) \sin 75^\circ \]

\[ = 10 \sin 75^\circ \approx 9.66 \text{ N}\cdot\text{m} = 9.66 \text{ J} \]

If the bolt is right-threaded, then the torque vector itself is

\[ \tau = |\tau| \mathbf{n} = 9.66 \mathbf{n} \]

where \( \mathbf{n} \) is a unit vector directed down into the page.

12.4 Exercises

1-7 Find the cross product \( \mathbf{a} \times \mathbf{b} \) and verify that it is orthogonal to both \( \mathbf{a} \) and \( \mathbf{b} \).

1. \( \mathbf{a} = \langle 1, 2, 0 \rangle, \quad \mathbf{b} = \langle 0, 3, 1 \rangle \)
2. \( \mathbf{a} = \langle 5, 1, 4 \rangle, \quad \mathbf{b} = \langle -1, 0, 2 \rangle \)
3. \( \mathbf{a} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}, \quad \mathbf{b} = -\mathbf{j} + 2\mathbf{k} \)
4. \( \mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}, \quad \mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k} \)
5. \( \mathbf{a} = 3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}, \quad \mathbf{b} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \)
6. \( \mathbf{a} = \mathbf{i} + \mathbf{e}_x^1 \mathbf{j} + \mathbf{e}_z^3 \mathbf{k}, \quad \mathbf{b} = 2\mathbf{i} + \mathbf{e}_y^2 \mathbf{j} - \mathbf{e}_z^3 \mathbf{k} \)
7. \( \mathbf{a} = \langle t, t^2, t^3 \rangle, \quad \mathbf{b} = \langle 1, 2t, 3t^2 \rangle \)
8. If \( \mathbf{a} = \mathbf{i} - 2\mathbf{k} \) and \( \mathbf{b} = \mathbf{j} + \mathbf{k} \), find \( \mathbf{a} \times \mathbf{b} \). Sketch \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{a} \times \mathbf{b} \) as vectors starting at the origin.

9. State whether each expression is meaningful. If not, explain why. If so, state whether it is a vector or a scalar.
   (a) \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \)
   (b) \( \mathbf{a} \times (\mathbf{b} \cdot \mathbf{c}) \)
   (c) \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \)
   (d) \( (\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c} \)
   (e) \( (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) \)
10-11 Find \( |\mathbf{u} \times \mathbf{v}| \) and determine whether \( \mathbf{u} \times \mathbf{v} \) is directed into the page or out of the page.

10. \( |\mathbf{u}| = 5 \), \( |\mathbf{v}| = 10 \), \( 60^\circ \)

11. \( |\mathbf{u}| = 6 \), \( |\mathbf{v}| = 8 \), \( 150^\circ \)

12. The figure shows a vector \( \mathbf{a} \) in the \( xy \)-plane and a vector \( \mathbf{b} \) in the direction of \( \mathbf{k} \). Their lengths are \( |\mathbf{a}| = 3 \) and \( |\mathbf{b}| = 2 \).
   (a) Find \( |\mathbf{a} \times \mathbf{b}| \).

(b) Use the right-hand rule to decide whether the components of \( \mathbf{a} \times \mathbf{b} \) are positive, negative, or 0.

13. If \( \mathbf{a} = \langle 1, 2, 1 \rangle \) and \( \mathbf{b} = \langle 0, 1, 3 \rangle \), find \( \mathbf{a} \times \mathbf{b} \) and \( \mathbf{b} \times \mathbf{a} \).

14. If \( \mathbf{a} = \langle 3, 1, 2 \rangle, \quad \mathbf{b} = \langle -1, 1, 0 \rangle, \) and \( \mathbf{c} = \langle 0, 0, -4 \rangle \), show that \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \).

15. Find two unit vectors orthogonal to both \( \langle 1, -1, 1 \rangle \) and \( \langle 0, 4, 4 \rangle \).

16. Find two unit vectors orthogonal to both \( \mathbf{i} + \mathbf{j} + \mathbf{k} \) and \( 2\mathbf{i} + \mathbf{k} \).

17. Show that \( \mathbf{0} \times \mathbf{a} = \mathbf{0} = \mathbf{a} \times \mathbf{0} \) for any vector \( \mathbf{a} \) in \( V_3 \).

18. Show that \( \mathbf{a} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0} \) for all vectors \( \mathbf{a} \) and \( \mathbf{b} \) in \( V_3 \).

19. Prove Property 1 of Theorem 8.

20. Prove Property 2 of Theorem 8.


22. Prove Property 4 of Theorem 8.

23. Find the area of the parallelogram with vertices \( A(-2, 1), B(0, 4), C(4, 2), \) and \( D(2, -1) \).

24. Find the area of the parallelogram with vertices \( E(1, 2, 3), \quad L(1, 3, 6), \quad M(3, 8, 6), \) and \( N(3, 7, 3) \).

25-28 Find a vector orthogonal to the plane through the points \( P, Q, \) and \( R \), and find the area of triangle \( PQR \).

25. \( P(1, 0, 0), \quad Q(0, 2, 0), \quad R(0, 0, 3) \)
26. \(P(2, 1, 5), \ Q(-1, 3, 4), \ R(3, 0, 6)\)
27. \(P(0, -2, 0), \ Q(4, 1, -2), \ R(5, 3, 1)\)
28. \(P(2, 0, -3), \ Q(3, 1, 0), \ R(5, 2, 2)\)

29-30. Find the volume of the parallelepiped determined by the vectors \(a, b,\) and \(c\).
29. \(a = (6, 3, -1), \ b = (0, 1, 2), \ c = (4, -2, 5)\)
30. \(a = i + j - k, \ b = i - j + k, \ c = -i + j + k\)

31-32. Find the volume of the parallelepiped with adjacent edges \(PQ, PR,\) and \(PS.\)
31. \(P(2, 0, 1), \ Q(4, 1, 0), \ R(3, -1, 1), \ S(2, -2, 2)\)
32. \(P(0, 1, 2), \ Q(2, 4, 5), \ R(-1, 0, 1), \ S(6, -1, 4)\)

33. Use the scalar triple product to verify that the vectors \(a = 21 + 3j + k, b = i - j,\) and \(c = 71 + 3j + 2k\) are coplanar.

34. Use the scalar triple product to determine whether the points \(P(1, 0, 1), Q(2, 4, 6), R(3, -1, 2),\) and \(S(6, 2, 8)\) lie in the same plane.

35. A bicycle pedal is pushed by a foot with a 60-N force as shown. The shaft of the pedal is 18 cm long. Find the magnitude of the torque about \(P.\)

36. Find the magnitude of the torque about \(P\) if a 36-lb force is applied as shown.

37. A wrench 30 cm long lies along the positive y-axis and grips a bolt at the origin. A force is applied in the direction \(\langle 0, 3, -4\rangle\) at the end of the wrench. Find the magnitude of the force needed to supply 190 J of torque to the bolt.

38. Let \(v = 5j\) and let \(u\) be a vector with length 3 that starts at the origin and rotates in the \(xy\)-plane. Find the maximum and minimum values of the length of the vector \(u \times v.\) In what direction does \(u \times v\) point?

39. (a) Let \(P\) be a point not on the line \(L\) that passes through the points \(Q\) and \(R.\) Show that the distance \(d\) from the point \(P\) to the line \(L\) is

\[d = \frac{|a \times b|}{|a|}\]

where \(a = \overrightarrow{QR}\) and \(b = \overrightarrow{QP}.

(b) Use the formula in part (a) to find the distance from the point \(P(1, 1, 1)\) to the line through \(Q(0, 6, 8)\) and \(R(-1, 4, 7).\)

40. (a) Let \(P\) be a point not on the plane that passes through the points \(Q, R,\) and \(S.\) Show that the distance \(d\) from \(P\) to the plane is

\[d = \frac{|(a \times b) \cdot c|}{|a \times b|}\]

where \(a = \overrightarrow{QR},\) \(b = \overrightarrow{QS},\) and \(c = \overrightarrow{QP}.

(b) Use the formula in part (a) to find the distance from the point \(P(2, 1, 4)\) to the plane through the points \(Q(1, 0, 0), R(0, 2, 0),\) and \(S(0, 0, 3).\)

41. Prove that \((a - b) \times (a + b) = 2(a \times b).\)

42. Prove part 6 of Theorem 8, that is,

\[a \times (b \times c) = (a \cdot c)b - (a \cdot b)c\]

43. Use Exercise 42 to prove that

\[a \times (b \times c) + b \times (c \times a) + c \times (a \times b) = 0\]

44. Prove that

\[
(a \times b) \cdot (c \times d) = \begin{vmatrix}
a & c & b & c \\
a & d & b & d \\
\end{vmatrix}
\]

45. Suppose that \(a \neq 0.\)
(a) If \(a \cdot b = a \cdot c,\) does it follow that \(b = c?\)
(b) If \(a \times b = a \times c,\) does it follow that \(b = c?\)
(c) If \(a \cdot b = a \cdot c\) and \(a \times b = a \times c,\) does it follow that \(b = c?\)

46. If \(v_1, v_2,\) and \(v_3\) are noncoplanar vectors, let

\[
k_1 = \frac{v_2 \times v_3}{v_1 \cdot (v_2 \times v_3)}, \quad k_2 = \frac{v_1 \times v_3}{v_1 \cdot (v_2 \times v_3)}, \quad k_3 = \frac{v_1 \times v_2}{v_1 \cdot (v_2 \times v_3)}
\]

(These vectors occur in the study of crystallography. Vectors of the form \(n_1 v_1 + n_2 v_2 + n_3 v_3,\) where each \(n_i\) is an integer, form a \textit{lattice} for a crystal. Vectors written similarly in terms of \(k_1, k_2,\) and \(k_3\) form the \textit{reciprocal lattice}.)

(a) Show that \(k_i\) is perpendicular to \(v_j\) if \(i \neq j.\)
(b) Show that \(k_i \cdot v_i = 1\) for \(i = 1, 2, 3.\)
(c) Show that \(k_i \cdot (k_2 \times k_3) = \frac{1}{v_1 \cdot (v_2 \times v_3)}\).
### DISCOVERY PROJECT

#### The Geometry of a Tetrahedron

A tetrahedron is a solid with four vertices, \( P, Q, R, \) and \( S \), and four triangular faces as shown in the figure.

1. Let \( v_1, v_2, v_3, \) and \( v_4 \) be vectors with lengths equal to the areas of the faces opposite the vertices \( P, Q, R, \) and \( S \), respectively, and directions perpendicular to the respective faces and pointing outward. Show that

\[
v_1 + v_2 + v_3 + v_4 = 0
\]

2. The volume \( V \) of a tetrahedron is one-third the distance from a vertex to the opposite face, times the area of that face.

(a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices \( P, Q, R, \) and \( S \).

(b) Find the volume of the tetrahedron whose vertices are \( P(1, 1, 1), Q(1, 2, 3), R(1, 1, 2), \) and \( S(3, -1, 2) \).

3. Suppose the tetrahedron in the figure has a trirectangular vertex \( S \). (This means that the three angles at \( S \) are all right angles.) Let \( A, B, \) and \( C \) be the areas of the three faces that meet at \( S \), and let \( D \) be the area of the opposite face \( PQR \). Using the result of Problem 1, or otherwise, show that

\[
D^2 = A^2 + B^2 + C^2
\]

(This is a three-dimensional version of the Pythagorean Theorem.)

---

### 12.5 Equations of Lines and Planes

A line in the \( xy \)-plane is determined when a point on the line and the direction of the line (its slope or angle of inclination) are given. The equation of the line can then be written using the point-slope form.

Likewise, a line \( L \) in three-dimensional space is determined when we know a point \( P_0(x_0, y_0, z_0) \) on \( L \) and the direction of \( L \). In three dimensions the direction of a line is conveniently described by a vector, so we let \( \mathbf{v} \) be a vector parallel to \( L \). Let \( P(x, y, z) \) be an arbitrary point on \( L \) and let \( \mathbf{r}_0 \) and \( \mathbf{r} \) be the position vectors of \( P_0 \) and \( P \) (that is, they have representations \( \overrightarrow{OP_0} \) and \( \overrightarrow{OP} \)). If \( \mathbf{a} \) is the vector with representation \( \overrightarrow{P_0P} \), as in Figure 1, then the Triangle Law for vector addition gives \( \mathbf{r} = \mathbf{r}_0 + t \mathbf{v} \). But, since \( \mathbf{a} \) and \( \mathbf{v} \) are parallel vectors, there is a scalar \( t \) such that \( \mathbf{a} = t \mathbf{v} \). Thus

\[
\mathbf{r} = \mathbf{r}_0 + t \mathbf{v}
\]

which is a vector equation of \( L \). Each value of the parameter \( t \) gives the position vector \( \mathbf{r} \) of a point on \( L \). In other words, as \( t \) varies, the line is traced out by the tip of the vector \( \mathbf{r} \). As Figure 2 indicates, positive values of \( t \) correspond to points on \( L \) that lie on one side of \( P_0 \), whereas negative values of \( t \) correspond to points that lie on the other side of \( P_0 \).

If the vector \( \mathbf{v} \) that gives the direction of the line \( L \) is written in component form as \( \mathbf{v} = (a, b, c) \), then we have \( t \mathbf{v} = (ta, tb, tc) \). We can also write \( \mathbf{r} = (x, y, z) \) and \( \mathbf{r}_0 = (x_0, y_0, z_0) \), so the vector equation (1) becomes

\[
(x, y, z) = (x_0 + ta, y_0 + tb, z_0 + tc)
\]
Two vectors are equal if and only if corresponding components are equal. Therefore, we have the three scalar equations:

\[
x = x_0 + at \\
y = y_0 + bt \\
z = z_0 + ct
\]

where \( t \in \mathbb{R} \). These equations are called parametric equations of the line \( L \) through the point \( P_0(x_0, y_0, z_0) \) and parallel to the vector \( \mathbf{v} = \langle a, b, c \rangle \). Each value of the parameter \( t \) gives a point \((x, y, z)\) on \( L \).

**Example 1**

(a) Find a vector equation and parametric equations for the line that passes through the point \((5, 1, 3)\) and is parallel to the vector \( \mathbf{i} + 4 \mathbf{j} - 2 \mathbf{k} \).

(b) Find two other points on the line.

**Solution**

(a) Here \( \mathbf{r}_0 = (5, 1, 3) = 5 \mathbf{i} + \mathbf{j} + 3 \mathbf{k} \) and \( \mathbf{v} = \mathbf{i} + 4 \mathbf{j} - 2 \mathbf{k} \), so the vector equation (1) becomes

\[
\mathbf{r} = (5 \mathbf{i} + \mathbf{j} + 3 \mathbf{k}) + t(\mathbf{i} + 4 \mathbf{j} - 2 \mathbf{k})
\]

or

\[
\mathbf{r} = (5 + t) \mathbf{i} + (1 + 4t) \mathbf{j} + (3 - 2t) \mathbf{k}
\]

Parametric equations are

\[
x = 5 + t \\
y = 1 + 4t \\
z = 3 - 2t
\]

(b) Choosing the parameter value \( t = 1 \) gives \( x = 6, y = 5, \) and \( z = 1 \), so \((6, 5, 1)\) is a point on the line. Similarly, \( t = -1 \) gives the point \((4, -3, 5)\).

The vector equation and parametric equations of a line are not unique. If we change the point or the parameter or choose a different parallel vector, then the equations change. For instance, if, instead of \((5, 1, 3)\), we choose the point \((6, 5, 1)\) in Example 1, then the parametric equations of the line become

\[
x = 6 + t \\
y = 5 + 4t \\
z = 1 - 2t
\]

Or, if we stay with the point \((5, 1, 3)\) but choose the parallel vector \( 2 \mathbf{i} + 8 \mathbf{j} - 4 \mathbf{k} \), we arrive at the equations

\[
x = 5 + 2t \\
y = 1 + 8t \\
z = 3 - 4t
\]

In general, if a vector \( \mathbf{v} = \langle a, b, c \rangle \) is used to describe the direction of a line \( L \), then the numbers \( a, b, \) and \( c \) are called direction numbers of \( L \). Since any vector parallel to \( \mathbf{v} \) could also be used, we see that any three numbers proportional to \( a, b, \) and \( c \) could also be used as a set of direction numbers for \( L \).

Another way of describing a line \( L \) is to eliminate the parameter \( t \) from Equations 2. If none of \( a, b, \) or \( c \) is 0, we can solve each of these equations for \( t \), equate the results, and obtain

\[
\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}
\]
These equations are called symmetric equations of $L$. Notice that the numbers $a$, $b$, and $c$ that appear in the denominators of Equations 3 are direction numbers of $L$, that is, components of a vector parallel to $L$. If one of $a$, $b$, or $c$ is 0, we can still eliminate $t$. For instance, if $c = 0$, we could write the equations of $L$ as

$$x = x_0, \quad \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

This means that $L$ lies in the vertical plane $x = x_0$.

**EXAMPLE 2**

(a) Find parametric equations and symmetric equations of the line that passes through the points $A(2, 4, -3)$ and $B(3, -1, 1)$.

(b) At what point does this line intersect the $xy$-plane?

**SOLUTION**

(a) We are not explicitly given a vector parallel to the line, but observe that the vector with representation $\overrightarrow{AB}$ is parallel to the line and

$$\mathbf{v} = (3 - 2, -1 - 4, 1 - (-3)) = (1, -5, 4)$$

Thus, direction numbers are $a = 1$, $b = -5$, and $c = 4$. Taking the point $(2, 4, -3)$ as $P_0$, we see that parametric equations (2) are

$$x = 2 + t, \quad y = 4 - 5t, \quad z = -3 + 4t$$

and symmetric equations (3) are

$$\frac{x - 2}{1} = \frac{y - 4}{-5} = \frac{z + 3}{4}$$

(b) The line intersects the $xy$-plane when $z = 0$, so we put $z = 0$ in the symmetric equations and obtain

$$\frac{x - 2}{1} = \frac{y - 4}{-5} = \frac{3}{4}$$

This gives $x = \frac{11}{4}$ and $y = \frac{1}{4}$, so the line intersects the $xy$-plane at the point $\left(\frac{11}{4}, \frac{1}{4}, 0\right)$.

In general, the procedure of Example 2 shows that direction numbers of the line $L$ through the points $P_0(x_0, y_0, z_0)$ and $P_1(x_1, y_1, z_1)$ are $x_1 - x_0$, $y_1 - y_0$, and $z_1 - z_0$ and symmetric equations of $L$ are

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

Often, we need a description, not of an entire line, but of just a line segment. How, for instance, could we describe the line segment $AB$ in Example 2? If we put $t = 0$ in the parametric equations in Example 2(a), we get the point $(2, 4, -3)$ and if we put $t = 1$ we get $(3, -1, 1)$. So the line segment $AB$ is described by the parametric equations

$$x = 2 + t, \quad y = 4 - 5t, \quad z = -3 + 4t, \quad 0 \leq t \leq 1$$

or by the corresponding vector equation

$$\mathbf{r}(t) = (2 + t, 4 - 5t, -3 + 4t), \quad 0 \leq t \leq 1$$
In general, we know from Equation 1 that the vector equation of a line through the (tip of the) vector \( \mathbf{r}_1 \) in the direction of a vector \( \mathbf{v} \) is \( \mathbf{r} = \mathbf{r}_0 + t\mathbf{v} \). If the line also passes through (the tip of) \( \mathbf{r}_1 \), then we can take \( \mathbf{v} = \mathbf{r}_1 - \mathbf{r}_0 \) and so its vector equation is

\[ \mathbf{r} = \mathbf{r}_0 + t(\mathbf{r}_1 - \mathbf{r}_0) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1. \]

The line segment from \( \mathbf{r}_0 \) to \( \mathbf{r}_1 \) is given by the parameter interval \( 0 \leq t \leq 1 \).

**Example 3** Show that the lines \( L_1 \) and \( L_2 \) with parametric equations

\[
\begin{align*}
  x &= 1 + t & y &= -2 + 3t & z &= 4 - t \\
  x &= 2s & y &= 3 + s & z &= -3 + 4s
\end{align*}
\]

are **skew lines**; that is, they do not intersect and are not parallel (and therefore do not lie in the same plane).

**Solution** The lines are not parallel because the corresponding vectors \( (1, 3, -1) \) and \( (2, 1, 4) \) are not parallel. (Their components are not proportional.) If \( L_1 \) and \( L_2 \) had a point of intersection, there would be values of \( t \) and \( s \) such that

\[
\begin{align*}
  1 + t &= 2s \\
  -2 + 3t &= 3 + s \\
  4 - t &= -3 + 4s
\end{align*}
\]

But if we solve the first two equations, we get \( t = \frac{11}{3} \) and \( s = \frac{5}{3} \), and these values don't satisfy the third equation. Therefore, there are no values of \( t \) and \( s \) that satisfy the three equations. Thus, \( L_1 \) and \( L_2 \) do not intersect. Hence, \( L_1 \) and \( L_2 \) are skew lines.

**Planes**

Although a line in space is determined by a point and a direction, a plane in space is more difficult to describe. A single vector parallel to a plane is not enough to convey the "direction" of the plane, but a vector perpendicular to the plane does completely specify its direction. Thus, a plane in space is determined by a point \( P_0(x_0, y_0, z_0) \) in the plane and a vector \( \mathbf{n} \) that is orthogonal to the plane. This orthogonal vector \( \mathbf{n} \) is called a **normal vector**. Let \( P(x, y, z) \) be an arbitrary point in the plane, and let \( \mathbf{r}_0 \) and \( \mathbf{r} \) be the position vectors of \( P_0 \) and \( P \). Then the vector \( \mathbf{r} - \mathbf{r}_0 \) is represented by \( P_0 \mathbf{P} \). (See Figure 6.) The normal vector \( \mathbf{n} \) is orthogonal to every vector in the given plane. In particular, \( \mathbf{n} \) is orthogonal to \( \mathbf{r} - \mathbf{r}_0 \) and so we have

\[ \mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0 \]

which can be rewritten as

\[ \mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0 \]

Either Equation 5 or Equation 6 is called a **vector equation of the plane**.
To obtain a scalar equation for the plane, we write \( \mathbf{n} = (a, b, c) \), \( \mathbf{r} = (x, y, z) \), and \( \mathbf{r}_0 = (x_0, y_0, z_0) \). Then the vector equation (5) becomes
\[
(a, b, c) \cdot (x - x_0, y - y_0, z - z_0) = 0
\]
or
\[
a(x - x_0) + b(y - y_0) + c(z - z_0) = 0
\]

Equation 7 is the scalar equation of the plane through \( P_0(x_0, y_0, z_0) \) with normal vector \( \mathbf{n} = (a, b, c) \).

**Example 4** Find an equation of the plane through the point \( (2, 4, -1) \) with normal vector \( \mathbf{n} = (2, 3, 4) \). Find the intercepts and sketch the plane.

**Solution** Putting \( a = 2 \), \( b = 3 \), \( c = 4 \), \( x_0 = 2 \), \( y_0 = 4 \), and \( z_0 = -1 \) in Equation 7, we see that an equation of the plane is
\[
2(x - 2) + 3(y - 4) + 4(z + 1) = 0
\]
or
\[
2x + 3y + 4z = 12
\]
To find the \( x \)-intercept we set \( y = z = 0 \) in this equation and obtain \( x = 6 \). Similarly, the \( y \)-intercept is 4 and the \( z \)-intercept is 3. This enables us to sketch the portion of the plane that lies in the first octant (see Figure 7).

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation of a plane as
\[
a x + b y + c z + d = 0
\]
where \( d = -(ax_0 + by_0 + cz_0) \). Equation 8 is called a linear equation in \( x \), \( y \), and \( z \). Conversely, it can be shown that if \( a \), \( b \), and \( c \) are not all 0, then the linear equation (8) represents a plane with normal vector \( (a, b, c) \). (See Exercise 73.)

**Example 5** Find an equation of the plane that passes through the points \( P(1, 3, 2) \), \( Q(3, -1, 6) \), and \( R(5, 2, 0) \).

**Solution** The vectors \( \mathbf{a} \) and \( \mathbf{b} \) corresponding to \( \overrightarrow{PQ} \) and \( \overrightarrow{PR} \) are
\[
\mathbf{a} = (2, -4, 4) \quad \mathbf{b} = (4, -1, -2)
\]
Since both \( \mathbf{a} \) and \( \mathbf{b} \) lie in the plane, their cross product \( \mathbf{a} \times \mathbf{b} \) is orthogonal to the plane and can be taken as the normal vector. Thus
\[
\mathbf{n} = \mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ 2 & -4 & 4 \\ 4 & -1 & -2 \end{vmatrix} = 12i + 20j + 14k
\]
With the point \( P(1, 3, 2) \) and the normal vector \( \mathbf{n} \), an equation of the plane is
\[
12(x - 1) + 20(y - 3) + 14(z - 2) = 0
\]
or
\[
6x + 10y + 7z = 50
\]
EXAMPLE 6 Find the point at which the line with parametric equations \(x = 2 + 3t\),
\(y = -4t\), \(z = 5 + t\) intersects the plane \(4x + 5y - 2z = 18\).

SOLUTION We substitute the expressions for \(x\), \(y\), and \(z\) from the parametric equations into the equation of the plane:

\[4(2 + 3t) + 5(-4t) - 2(5 + t) = 18\]

This simplifies to \(-10t = 20\), so \(t = -2\). Therefore, the point of intersection occurs when the parameter value is \(t = -2\). Then \(x = 2 + 3(-2) = -4\), \(y = -4(-2) = 8\), \(z = 5 - 2 = 3\) and so the point of intersection is \((-4, 8, 3)\).

Two planes are parallel if their normal vectors are parallel. For instance, the planes \(x + 2y - 3z = 4\) and \(2x + 4y - 6z = 3\) are parallel because their normal vectors are \(\mathbf{n}_1 = (1, 2, -3)\) and \(\mathbf{n}_2 = (2, 4, -6)\) and \(\mathbf{n}_2 = 2\mathbf{n}_1\). If two planes are not parallel, then they intersect in a straight line and the angle between the two planes is defined as the acute angle between their normal vectors (see angle \(\theta\) in Figure 9).

EXAMPLE 7
(a) Find the angle between the planes \(x + y + z = 1\) and \(x - 2y + 3z = 1\).
(b) Find symmetric equations for the line of intersection \(L\) of these two planes.

SOLUTION
(a) The normal vectors of these planes are

\[\mathbf{n}_1 = (1, 1, 1) \quad \mathbf{n}_2 = (1, -2, 3)\]

and so, if \(\theta\) is the angle between the planes, Corollary 12.3.6 gives

\[\cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{||\mathbf{n}_1|| ||\mathbf{n}_2||} = \frac{1(1) + 1(-2) + 1(3)}{\sqrt{1 + 1 + 1} \sqrt{1 + 4 + 9}} = \frac{2}{\sqrt{42}}\]

\[\theta = \cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^\circ\]

(b) We first need to find a point on \(L\). For instance, we can find the point where the line intersects the \(xy\)-plane by setting \(z = 0\) in the equations of both planes. This gives the equations \(x + y = 1\) and \(x - 2y = 1\), whose solution is \(x = 1, y = 0\). So the point \((1, 0, 0)\) lies on \(L\).

Now we observe that, since \(L\) lies in both planes, it is perpendicular to both of the normal vectors. Thus, a vector \(\mathbf{v}\) parallel to \(L\) is given by the cross product

\[\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -2 & 3 \end{vmatrix} = 5\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}\]

and so the symmetric equations of \(L\) can be written as

\[\frac{x - 1}{5} = \frac{y}{-2} = \frac{z}{-3}\]

NOTE Since a linear equation in \(x\), \(y\), and \(z\) represents a plane and two nonparallel planes intersect in a line, it follows that two linear equations can represent a line. The points \((x, y, z)\) that satisfy both \(a_1x + b_1y + c_1z + d_1 = 0\) and \(a_2x + b_2y + c_2z + d_2 = 0\)
lie on both of these planes, and so the pair of linear equations represents the line of intersection of the planes (if they are not parallel). For instance, in Example 7 the line \( L \) is given as the line of intersection of the planes \( x + y + z = 1 \) and \( x - 2y + 3z = 1 \). The symmetric equations that we found for \( L \) could be written as

\[
\frac{x - 1}{5} = \frac{y}{-2} = \frac{z}{-3}
\]

which is again a pair of linear equations. They exhibit \( L \) as the line of intersection of the planes \( (x - 1)/5 = y/(-2) \) and \( y/(-2) = z/(-3) \). (See Figure 11.)

In general, when we write the equations of a line in the symmetric form

\[
\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}
\]

we can regard the line as the line of intersection of the two planes

\[
\frac{x - x_0}{a} = \frac{y - y_0}{b} \quad \text{and} \quad \frac{y - y_0}{b} = \frac{z - z_0}{c}
\]

**EXAMPLE 8** Find a formula for the distance \( D \) from a point \( P_1(x_1, y_1, z_1) \) to the plane \( ax + by + cz + d = 0 \).

**SOLUTION** Let \( P_0(x_0, y_0, z_0) \) be any point in the given plane and let \( \mathbf{b} \) be the vector corresponding to \( \overrightarrow{P_0P_1} \). Then

\[
\mathbf{b} = (x_1 - x_0, y_1 - y_0, z_1 - z_0)
\]

From Figure 12 you can see that the distance \( D \) from \( P_1 \) to the plane is equal to the absolute value of the scalar projection of \( \mathbf{b} \) onto the normal vector \( \mathbf{n} = (a, b, c) \). (See Section 12.3.) Thus

\[
D = |\text{comp}_\mathbf{n} \mathbf{b}| = \left| \frac{\mathbf{n} \cdot \mathbf{b}}{||\mathbf{n}||} \right|
\]

\[
= \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}
\]

\[
= \frac{|(ax_1 + by_1 + cz_1) - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}
\]

Since \( P_0 \) lies in the plane, its coordinates satisfy the equation of the plane and so we have \( ax_0 + by_0 + cz_0 + d = 0 \). Thus, the formula for \( D \) can be written as

\[
D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}
\]

**EXAMPLE 9** Find the distance between the parallel planes \( 10x + 2y - 2z = 5 \) and \( 5x + y - z = 1 \).

**SOLUTION** First we note that the planes are parallel because their normal vectors \( \langle 10, 2, -2 \rangle \) and \( \langle 5, 1, -1 \rangle \) are parallel. To find the distance \( D \) between the planes, we choose any point on one plane and calculate its distance to the other plane. In particular, if we put \( y = z = 0 \) in the equation of the first plane, we get \( 10x = 5 \) and so
\((1, 0, 0)\) is a point in this plane. By Formula 9, the distance between \((1, 0, 0)\) and the plane \(5x + y - z - 1 = 0\) is

\[
D = \frac{|5(1) + 1(0) - 1(0) - 1|}{\sqrt{5^2 + 1^2 + (-1)^2}} = \frac{2}{\sqrt{3}} = \frac{\sqrt{3}}{3}
\]

So the distance between the planes is \(\sqrt{3}/3\).

**EXAMPLE 10** In Example 3 we showed that the lines

- \(L_1: x = 1 + t, y = -2 + 3t, z = 4 - t\)
- \(L_2: x = 2s, y = 3 + s, z = -3 + 4s\)

are skew. Find the distance between them.

**SOLUTION** Since the two lines \(L_1\) and \(L_2\) are skew, they can be viewed as lying on two parallel planes \(P_1\) and \(P_2\). The distance between \(L_1\) and \(L_2\) is the same as the distance between \(P_1\) and \(P_2\), which can be computed as in Example 9. The common normal vector to both planes must be orthogonal to both \(v_1 = (1, 3, -1)\) (the direction of \(L_1\)) and \(v_2 = (2, 1, 4)\) (the direction of \(L_2\)). So a normal vector is

\[
n = v_1 \times v_2 = \begin{vmatrix} i & j & k \\ 1 & 3 & -1 \\ 2 & 1 & 4 \end{vmatrix} = 13i - 6j - 5k
\]

If we put \(s = 0\) in the equations of \(L_2\), we get the point \((0, 3, -3)\) on \(L_2\) and so an equation for \(P_2\) is

\[
13(x - 0) - 6(y - 3) - 5(z + 3) = 0 \quad \text{or} \quad 13x - 6y - 5z + 3 = 0
\]

If we now set \(t = 0\) in the equations for \(L_1\), we get the point \((1, -2, 4)\) on \(P_1\). So the distance between \(L_1\) and \(L_2\) is the same as the distance from \((1, -2, 4)\) to \(13x - 6y - 5z + 3 = 0\). By Formula 9, this distance is

\[
D = \frac{|13(1) - 6(-2) - 5(4) + 3|}{\sqrt{13^2 + (-6)^2 + (-5)^2}} = \frac{8}{\sqrt{230}} \approx 0.53
\]

### 12.5 Exercises

1. Determine whether each statement is true or false.
   (a) Two lines parallel to a third line are parallel.
   (b) Two lines perpendicular to a third line are parallel.
   (c) Two planes parallel to a third plane are parallel.
   (d) Two lines perpendicular to a third plane are parallel.
   (e) Two lines parallel to a plane are parallel.
   (f) Two lines perpendicular to a plane are parallel.
   (g) Two planes parallel to a line are parallel.
   (h) Two planes perpendicular to a line are parallel.
   (i) Two planes either intersect or are parallel.
   (j) Two lines either intersect or are parallel.
   (k) A plane and a line either intersect or are parallel.

2-5 Find a vector equation and parametric equations for the line.

2. The line through the point \((1, 0, -3)\) and parallel to the vector \(2i - 4j + 5k\)

3. The line through the point \((-2, 4, 10)\) and parallel to the vector \((3, 1, -8)\)

4. The line through the origin and parallel to the line \(x = 2t, y = 1 - t, z = 4 + 3t\)

5. The line through the point \((1, 0, 6)\) and perpendicular to the plane \(x + 3y + z = 5\)
6-12 Find parametric equations and symmetric equations for the line.

6. The line through the origin and the point (1, 2, 3)

7. The line through the points (1, 3, 2) and (-4, 3, 0)

8. The line through the points (6, 1, -3) and (2, 4, 5)

9. The line through the points (0, j, 1) and (2, 1, -3)

10. The line through (2, 1, 0) and perpendicular to both i + j and j + k

11. The line through (1, -1, 1) and parallel to the line 

\[ x + 2 = \frac{1}{2} y = z - 3 \]

12. The line of intersection of the planes \[ x + y + z = 1 \] and \[ x + z = 0 \]

13. Is the line through (-4, -6, 1) and (-2, 0, -3) parallel to the line through (0, 18, 4) and (5, 3, 14)?

14. Is the line through (4, 1, -1) and (2, 5, 3) perpendicular to the line through (-3, 2, 0) and (5, 1, 4)?

15. (a) Find symmetric equations for the line that passes through the point (0, 2, -1) and is parallel to the line with parametric equations \[ x = 1 + 2t, y = 3t, z = 5 - 7t. \]

(b) Find the points in which the required line in part (a) intersects the coordinate planes.

16. (a) Find parametric equations for the line through (5, 1, 0) that is perpendicular to the plane \[ 2x - y + z = 1. \]

(b) In what points does this line intersect the coordinate planes?

17. Find a vector equation for the line segment from \( (2, -1, 4) \) to \( (4, 6, 1) \).

18. Find parametric equations for the line segment from \( (10, 3, 1) \) to \( (5, 6, -3) \).

19-22 Determine whether the lines \( L_1 \) and \( L_2 \) are parallel, skew, or intersecting. If they intersect, find the point of intersection.

20. \( L_1: x = t, \ y = 1 + 6t, \ z = -3t \)

\( L_2: x = 2s, \ y = 4 + 3s, \ z = s \)

21. \( L_1: \frac{x - 1}{2} = \frac{y - 2}{3}, \ L_2: \frac{x - 3}{4} = \frac{y - 2}{-3} = \frac{z - 1}{2} \)

22. \( L_1: \frac{x - 1}{2} = \frac{y - 3}{2} = z - 2 \)

\( L_2: \frac{x - 2}{1} = \frac{y - 6}{3} = z + 2 \)

23-38 Find an equation of the plane.

23. The plane through the point (6, 3, 2) and perpendicular to the vector (-2, 1, 5)

24. The plane through the point (4, 0, -3) and normal vector \( j + 2k \)

25. The plane through the point (1, -1, 1) and with normal vector \( i + j - k \)

26. The plane through the point \(-2, 8, 10\) and perpendicular to the line \( x = 1 + t, y = 2t, z = 4 - 3t \)

27. The plane through the origin and parallel to the plane \( 2x - y + 3z = 1 \)

28. The plane through the point \(-1, 6, -5\) and parallel to the plane \( x + y + z + 2 = 0 \)

29. The plane through the point \( (4, -2, 3) \) and parallel to the plane \( 3x - 7z = 12 \)

30. The plane that contains the line \( x = 3 + 2t, y = 1 + t, z = 8 - t \) and is parallel to the plane \( 2x + 4y + 8z = 17 \)

31. The plane through the points \((0, 1, 1), (1, 0, 1), \) and \( (1, 1, 0) \)

32. The plane through the origin and the points \((2, -4, 6)\) and \((5, 1, 3)\)

33. The plane through the points \( (3, -1, 2), (8, 2, 4),\) and \((-1, -2, -3)\)

34. The plane that passes through the point \( (1, 2, 3) \) and contains the line \( x = 3t, y = 1 + t, z = 2 - t \)

35. The plane that passes through the point \( (5, 0, -2) \) and contains the line \( x = 4 - 2t, y = 3 + 5t, z = 7 + 4t \)

36. The plane that passes through the point \( (1, -1, 1) \) and contains the line with symmetric equations \( x = 2y = 3z \)

37. The plane that passes through the point \( (-1, 2, 1) \) and contains the line of intersection of the planes \( x + y - 2z = 2 \) and \( 2x - y + 3z = 1 \)

38. The plane that passes through the line of intersection of the planes \( x - z = 1 \) and \( y + 2z = 3 \) and is perpendicular to the plane \( x + y - 2z = 1 \)

39-41 Determine the angle between the given plane and \( x = 3 - t, \ y = 2 + t, \ z = 5t \); \( x - y + 2z = 9 \)

40. \( x = 1 + 2t, \ y = 4t, z = 2 - 3t; \ x + 2y - z + 1 = 0 \)

41. \( x = y - 1 = 2z; \ 4x - y + 3z = 8 \)

42. Where does the line through \((1, 0, 1)\) and \((4, -2, 2)\) intersect the plane \( x + y + z = 6 \)?

43. Find direction numbers for the line of intersection of the planes \( x + y + z = 1 \) and \( x + z = 0. \)

44. Find the angle between the planes \( x + y + z = 1 \) and \( x + 2y + 3z = 1. \)
Determine whether the planes are parallel, perpendicular, or neither, if either, find the angle between them.

1. \(4x - 3y = 1, \ 3x + 6y + 7z = 0\)
2. \(2y = 4z - x, \ 3x - 12y + 6z = 1\)
3. \(y + z = 1, \ x - y + z = 1\)
4. \(-3y + 4z = 5, \ x + 6y + 4z = 3\)
5. \(-4y - 2z, \ 8y = 1 + 2x + 4z\)
6. \(x + 2y + z = 1, \ 2x - y + 2z = 1\)

(a) Find symmetric equations for the line of intersection of planes and (b) find the angle between the planes.

1. \(x + y = 2, \ 3x - 4y + 5z = 6\)
2. \(x - 2y + z = 1, \ 2x + y + z = 1\)

Find parametric equations for the line of intersection of planes.

1. \(x + y, \ 2x - 5y - z = 1\)
2. \(x + 5z = 0, \ x - 3y + z + 2 = 0\)

Find an equation for the plane consisting of all points that are equidistant from the points \((1, 1, 0)\) and \((0, 1, 1)\).

Find an equation for the plane consisting of all points that are equidistant from the points \((-4, 2, 1)\) and \((2, -4, 3)\).

Find an equation of the plane with \(x\)-intercept \(a\), \(y\)-intercept \(b\), and \(z\)-intercept \(c\).

(a) Find the point at which the given lines intersect:

\[ \begin{align*}
\text{Line 1:} & \quad r = (1, 1, 0) + t(1, -1, 2) \\
\text{Line 2:} & \quad r = (2, 0, 2) + s(-1, 1, 0)
\end{align*} \]

(b) Find an equation of the plane that contains these lines.

Find parametric equations for the line through the point \((0, 1, 2)\) that is parallel to the plane \(x + y + z = 2\) and perpendicular to the line \(x = 1 + t, y = 1 - t, z = 2t\).

Find parametric equations for the line through the point \((0, 1, 2)\) that is perpendicular to the line \(x = 1 + t, y = 1 - t, z = 2t\) and intersects this line.

Which of the following four planes are parallel? Are any of them identical?

1. \(P_1: 4x - 2y + 6z = 3\)
2. \(P_2: 4x - 2y - 2z = 6\)
3. \(-6x + 3y - 9z = 5\)
4. \(P_4: z = 2x - y - 3\)

6. Which of the following four lines are parallel? Are any of them identical?

\[ \begin{align*}
L_1: & \quad x = 1 + t, \ y = t, \ z = 2 - 5t \\
L_2: & \quad x + 1 = y - 2 = 1 - z \\
L_3: & \quad x = 1 + t, \ y = 4 + t, \ z = 1 - t \\
L_4: & \quad r = (2, 1, -3) + t(2, 2, -10)
\end{align*} \]

63-64 Use the formula in Exercise 39 in Section 12.4 to find the distance from the point to the given line.

63. \((1, 2, 3); \quad x = 2 + t, \ y = 2 - 3t, \ z = 5t\)
64. \((1, 0, -1); \quad x = 5 - t, \ y = 3t, \ z = 1 + 2t\)

65-66 Find the distance from the point to the given plane.

65. \((2, 8, 5); \quad x - 2y - 2z = 1\)
66. \((3, -2, 7); \quad 4x - 6y + z = 5\)

67-68 Find the distance between the given parallel planes.

67. \(x = x + 2y + 1, \ 3x + 6y - 3z = 4\)
68. \(3x + 6y - 9z = 4, \ x + 2y - 3z = 1\)

69. Show that the distance between the parallel planes \(ax + by + cz + d_1 = 0\) and \(ax + by + cz + d_2 = 0\) is

\[ D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}} \]

70. Find equations of the planes that are parallel to the plane \(x + 2y - 2z = 1\) and two units away from it.

71. Show that the lines with symmetric equations \(x = y = z\) and \(x + 1 = y/2 = z/3\) are skew, and find the distance between these lines.

72. Find the distance between the skew lines with parametric equations \(x = 1 + t, y = 1 + 6t, z = 2t\), and \(x = 1 + 2s, y = 5 + 15s, z = -2 + 6s\).

73. If \(a, b,\) and \(c\) are not all 0, show that the equation

\[ ax + by + cz + d = 0 \]

represents a plane and \((a, b, c)\) is a normal vector to the plane.

Hint: Suppose \(a \neq 0\) and rewrite the equation in the form

\[ a\left(x + \frac{d}{a}\right) + b(y - 0) + c(z - 0) = 0 \]

74. Give a geometric description of each family of planes.

(a) \(x + y + z = c\)
(b) \(x + y + cz = 1\)
(c) \(y \cos \theta + z \sin \theta = 1\)