In this chapter we introduce vectors and coordinate systems for
three-dimensional space. This will be the sefting for our study of

the calculus of functions of two variables in Chapter 14 because

the graph of such a function is a surface in space. In this chapter
we will see that vectors provide particularly simple descriptions

of lines and planes in space.

o
FIGURE 1
Coordinate axes

FIGURE 2
Right-hand rule

FIGURE 3

Jm 12.1 Three-Nimensional Coordinate Systems

To locate a point in a plane, two numbers are necessary. We know that any point in
the plane can be represented as an ordered pair (a, b) of real numbers, where a is the
x-coordinate and b is the y-coordinate. For this reason, a plane is called two-dimensional.
To locate a point in space, three numbers are required. We represent any point in space by
an ordered triple (a, &, ¢) of real numbers.

In order to represent points in space, we first choose a fixed point O (the origin) and
three directed lines through O that are perpendicular to each other, called the coordinate
axes and labeled the x-axis, y-axis, and z-axis. Usually we think of the x- and y-axes as
being horizontal and the z-axis as being vertical, and we draw the orientation of the axes
as in Figure |. The direction of the z-axis is determined by the right-hand rule as illus-
trated in Figure 2: If you curl the fingers of your right hand around the z-axis in the direc-
tion of a 90° counterclockwise rotation from the positive x-axis to the positive y-axis, then
your thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The xy-plane is the plane that contains the x- and y-axes; the yz-plane contains
the y- and z-axes; the xz-plane contains the x- and z-axes. These three coordinate planes
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

4

(a) Coordinate planes (b)

Because many people have some difficulty visualizing diagrams of three-dimensional
figures, you may find it helpful to do the following {see Figure 3(b)]. Look at any bottom
corner of a room and call the corner the origin. The wall on your left is in the xz-plane, the
wall on your right is in the yz-plane, and the floor is in the xy-plane. The x-axis runs along
the intersection of the floor and the left wall. The y-axis runs along the intersection of the
floor and the right wall. The z-axis runs up from the floor toward the ceiling along the inter-
section of the two walls. You are situated in the first octant, and you can now imagine seven
other rooms situated in the other seven octants (three on the same floor and four on the
floor below), all connected by the common corner point O.
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FIGURE 5

FIGURE 7 (a) z=3, a plane in R®

Now if P is any point in space, let a be the (directed) distance from the yz-plane g P
let b be the distance from the xz-plane to F, and let ¢ be the distance from the xy-plane ¢,
P. We represent the point P by the ordered triple (a, b, c) of real numbers and we caj] a,b,
and ¢ the coordinates of P; a is the x-coordinate, b is the y-coordinate, and ¢ ig the
z-coordinate. Thus, to locate the point (a, b, ¢) we can start at the origin O and moy,
a units along the x-axis, then & units parallel to the y-axis, and then c units parallel to
z-axis as in Figure 4.

The point P(a, b, ¢} determines a rectangular box as in Figure 5. If we drop a perpen-
dicular from P to the xy-plane, we get a point Q with coordinates (a, b, 0) called the pro.
Jection of P on the xy-plane. Similarly, R(0, b, ¢} and S(a, 0, ¢} are the projections of P gy
the yz-plane and xz-plane, respectively.

As numerical illustrations, the points (—4, 3, —5) and (3, —2, —6) are plotted ip

Figure 6.

N
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FIGURE 6

The Cartesian product R X R X R = {(x, y, z) | x, y, z € R} is the set of all ordered
triples of real numbers and is denoted by R*. We have given a one-to-one correspon-
dence between points P in space and ordered triples (a, b, ¢} in R>. It is called a three-
dimensional rectangular coordinate system. Notice that, in terms of coordinates, the
first octant can be described as the set of points whose coordinates are all positive.

In two-dimensional analytic geometry, the graph of an equation involving x and y is a
curve in R2 In three-dimensional analytic geomeltry, an equation in x, y, and z represents
a surface in R>.

EXAMPLE 1 What surfaces in R* are represented by the following equations?
(a) z=3 (d) y=5

SOLUTION

(a) The equation z = 3 represents the set {(x, y, z) | z = 3}, which is the set of all points
in R* whose z-coordinate is 3. This is the horizontal plane that is parallel to the xy-plane
and three units above it as in Figure 7(a).

¥y
5
—_—
1] x
(b) y =5, a plane in R’ (c) y=5, aline in R?

Fi6



FIGURE 8
The plane y = x

e

FIGURE 9

P(xuy,2)

A(xz, y1,7y)

Po(xy, y2r 23)

B(xy,y2.21)
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(b) The equation y = 5 represents the set of all points in R* whose y-coordinate is 5.
This is the vertical plane that is parallel to the xz-plane and five units to the right of it as
in Figure 7(b). i

NOTE - When an equation is given, we must understand from the context whether it rep-
resents a curve in R? or a surface in R, In Example 1, y = 5 represents a plane in R, but
of course y = 5 can also represent a line in R? if we are dealing with two-dimensional ana-
lytic geometry. See Figure 7(b) and (c).

In general, if k is a constant, then x = k represents a plane parallel to the yz-plane,
y = k is a plane parallel to the xz-plane, and z = k is a plane parallel to the xy-plane. In
Figure 5, the faces of the rectangular box are formed by the three coordinate planes x = 0
(the yz-plane), y = 0 (the xz-plane), and z = 0O (the xy-plane), and the planes x = a,y = b,
and z = c.

EXAMPLE 2 Describe and sketch the surface in R* represented by the equation y = x.

SOLUTION The equation represents the set of all points in R* whose x- and y-coordinates
are equal, that is, {(x, x, z) | x € R, z € R}. This is a vertical plane that intersects the
xy-plane in the line y = x, z = 0. The portion of this plane that lies in the first octant is
sketched in Figure 8. e

The familiar formula for the distance between two points in a plane is easily extended
to the following three-dimensional formula.

Distance Formula in Three Dimensions The distance | P, P, | between the pomts
Pi(xy, y1, 1) and Pox3, y2, 25) is

|P1P2| = \/(Xz - Xl)z + ()’z - )’1)2 + (Zz - 21)2

To see why this formula is true, we construct a rectangular box as in Figure 9, where P,
and P, are opposite vertices and the faces of the box are parallel to the coordinate planes.
If A(x2, y1, z1) and B(x,, y,, z;) are the vertices of the box indicated in the figure, then

|PA] =[x — x| |AB| = |y2 = »| |BP| = |z = 2]

Because triangles P;BP, and P,AB are both right-angled, two applications of the Pythago-
rean Theorem give

|P|P2|2: |P|B|2+ |BP2|2

and |PBI*=[PA|* + |AB]

Combining these equations, we get
|P\P:|* = |P\A|* + |AB|* + | BP,|?
=l -—xfP+ |yl t|z—=al

= —x)+ (2 —y)P+ (@ —z2)

Therefore |P\P;| = (x2 — x> + (32 — y)* + (z2 — 21)?
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FIGURE 10

FIGURE 11

P(x, y,z)

EXAMPLE 3 The distance from the point P(2, —1, 7) to the point Q(1, —3, 5) is

|PO| =/ -2+ (3 +12+(5—-72

Y e -

EXAMPLE 4 Find an equation of a sphere with radius r and center C(h, k, /).

SOLUTION By definition, a sphere is the set of all points P(x, y, z) whose distance from
C is r. (See Figure 10.) Thus, P is on the sphere if and only if | PC| = r. Squaring both
sides, we have | PC|> = r* or

x=—h*+ (- +@-0)=r ok

The result of Example 4 is worth remembering.

Equation of a Sphere An equation of a sphere with center C(#, k, {) and radius r is
x—h+ G-k +@Ez-1)P=r
In particular, if the center is the origin O, then an equation of the sphere is

X+ yr+ =72

EXAMPLE 5 Show that x> + y? + z* + 4x — 6y + 2z + 6 = O is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if we
complete squares:

F+Hax+ D+ (P +N+ (@ +2z+1)=~6+4+9+1
x+2+ (=32 +@E+1)?=8

Comparing this equation with the standard form, we see that it is the equation of a
sphere with center (—2, 3, —1) and radius v/8 = 2/2. i

EXAMPLE 6 What region in R’ is represented by the following inequalities?
Isx?+yr+22<4 z<0
SOLUTION The inequalities
1$x2+y2+22<4
can be rewritten as
lsJ/x2+yr+22<2

so they represent the points (x, y, z) whose distance from the origin is at least 1 and at
most 2. But we are also given that z < 0, so the points lie on or below the xy-plane.
Thus, the given inequalities represent the region that lies between {or on) the spheres
x*+ y?+ z2 = land x> + y? + 2% = 4 and beneath (or on) the xy-plane. It is sketched
in Figure 11. sl
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'uppose you start at the origin, move along the x-axis a
istance of 4 units in the positive direction, and then move
ownward a distance of 3 units. What are the coordinates
f your position?

ketch the points (0, 5, 2), (4,0, —1),(2,4,6), and (1, ~ 1, 2)
n a single set of coordinate axes.

Vhich of the points P(6, 2, 3), O(—5, —1, 4), and R(0, 3, 8) is
losest to the xz-plane? Which point lies in the yz-plane?

Vhat are the projections of the point (2, 3, 5) on the xy-, yz-,
nd xz-planes? Draw a rectangular box with the origin and

2, 3, 5) as opposite vertices and with its faces parallel to the
oordinate planes. Label all vertices of the box. Find the length
f the diagonal of the box.

Yescribe and sketch the surface in R? represented by the equa-
onx +y==2

1) What does the equation x = 4 represent in R*? What does
it represent in R*? Illustrate with sketches.

7) What does the equation y = 3 represent in R*? What does
z = 5 represent? What does the pair of equations y = 3,
z = 5 represent? In other words, describe the set of points
(x, y,z) such that y = 3 and z = 5. Illustrate with a sketch.

how that the triangle with vertices P(—2, 4, 0), (1, 2, —1),
nd R(—1, 1, 2) is an equilateral triangle.

ind the lengths of the sides of the triangle with vertices
(1,2, =3), B(3,4, —2), and C(3, —2, 1). Is ABC a right
iangle? Is it an isosceles triangle?

Jetermine whether the points lie on a straight line.
1) A(5,1,3), B(7,9,—-1), C(1, —15,11)
” K(0,3, -4), L(1,2,-2), M(3,0,1)

ind the distance from (3, 7, —5) to each of the following.
1) The xy-plane (b) The yz-plane

:) The xz-plane (d) The x-axis

3) The y-axis (f) The z-axis

ind an equation of the sphere with center (1, —4, 3) and
idius 5. What is the intersection of this sphere with the
z-plane?

ind an equation of the sphere with center (6, 5, —2) and
wdius /7. Describe its intersection with each of the coordinate
lanes.

ind an equation of the sphere that passes through the point
I, 3, —1) and has center (3, 8, 1).

ind an equation of the sphere that passes through the origin
ad whose center is (1, 2, 3).

15-18 1 Show that the equation represents a sphere, and find its
center and radius. '

15, 2+ y?+ 22— 6x+4y — 2z =11
16, x2+ y>+ 22 =4x — 2y
17. x>+ y*+ 22 =x+y+z
18. 4x2+ 4y* + 42 — 8x + l6y =1

a o a a o a a a a a a a

19. (a) Prove that the midpoint of the line segment from
Pi(x1, yu. 21) to Poxz, y3, 22) is

x,+tx; ity zp+z
2 ’ 2 ’ 2

(b) Find the lengths of the medians of the triangle with vertices
A(1,2,3), B(—2,0,5), and C(4, 1, 5).

20. Find an equation of a sphere if one of its diameters has end-
points (2, 1, 4) and (4, 3, 10).

Z¥: Find equations of the spheres with center (2, —3, 6) that touch
(a) the xy-plane, (b) the yz-plane, (c) the xz-plane.

22. Find an equation of the largest sphere with center (5, 4, 9) that
is contained in the first octant. -

23-34 1 Describe in words the region of R* represented by the
equation or inequality.

23. y=-4 24. x=10
25. x>3 26. y=0
0=<:z<6 2. y=:

29 2+ yr+22>1
30 1 <x*+y?+22<25
L2+ y2+ 22 —-22<3

8% S+ 229 M. xyz=0

o o o a a a a ) a a a a

32 P+ yr=1

35-38 1 Write inequalities to describe the region.

35. The half-space consisting of all points to the left of the
xz-plane

36. The solid rectangular box in the first octant bounded by the
planesx =1,y=2,andz =3

87; The region consisting of all points between (but not on) the
spheres of radius r and R centered at the origin, where r < R

38. The solid upper hemisphere of the sphere of radius 2 centered
at the origin

a o o o o a a o a a a o
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39. The figure shows a line L, in space and a second line L,, the points on L, are directly beneath, or above, the points
which is the projection of L, on the xy-plane. (In other words, only)
z (a) Find the coordinates of the point P on the line L,.

(b) Locate on the diagram the points A, B, and C, where
the line L, intersects the xy-plane, the yz-plane, and the
xz-plane, respectively.

40. Consider the points P such that the distance from P to
A(—, 3, 3) is twice the distance from P to B(6, 2, —2). Show
that the set of all such points is a sphere, and find its center anq
radius.

41 Find an equation of the set of all points equidistant from the
points A(— L, 5, 3) and B(6, 2, —2). Describe the set.

42. Find the volume of the solid that lies inside both of the spheres
KAy + A2y + 42 +5=0

and x*+yr+ =4

FiC
The term vector is used by scientists to indicate a quantity (such as displacement or veloc-
ity or force) that has both magnitude and direction. A vector is often represented by an
arrow or a directed line segment. The length of the arrow represents the magnitude of the
vector and the arrow points in the direction of the vector. We denote a vector by printing a
u letter in boldface (v) or by putting an arrow above the letter (7). 3 ‘
v For instance, suppose a particle moves along a line segment from point A to point B.
The corresponding displacement vector v. shown in Figure 1, has initial point A (the tail)
and terminal point B (the tip) and we indicate this by writing v = AB. Notice that the vec-
tor u = CD has the same length and the same direction as v even though it is in a differ-
FIGURE 1 ent position. We say that u and v are equivalent (or equal) and we write u = v. The zero
Equivalent vectors vector, denoted by 0, has length 0. It is the only vector with no specific direction.

A

|“| Combining Vectors

C Suppose a particle moves from A to B, so its displacement vector is A—é Then the particle
changes direction and moves from B to C, with displacement vector BC as in Figure 2. The
B combined effect of these displacements is that the particle has moved from A to C. The

resulting displacement vector AC is called the sum of AB and BC and we write

A AC = AB + BC N | )7

FIGURE 2 In general, if we start with vectors u and v, we first move v so that its tail coincides with
the tip of u and define the sum of u and v as follows.

Definition of Vector Addition If u and v are vectors positioned so the initial point of v
is at the terminal point of u, then the sum u + v is the vector from the initial point
of u to the terminal point of v. B fleur




SECTION 12.2 VECTORS it 799

The definition of vector addition is illustrated in Figure 3. You can see why this defini-
tion is sometimes called the Triangle Law.

FIGURE 3 The Triangle Law FIGURE 4 The Parallelogram Law

In Figure 4 we start with the same vectors u and v as in Figure 3 and draw another
copy of v with the same initial point as u. Completing the parallelogram, we see that
u + v = v + u. This also gives another way to construct the sum: If we place u and v so
they start at the same point, then u + v lies along the diagonal of the parallelogram with
u and v as sides. (This is called the Parallelogram Law.)

\ EXAMPLE 1 Draw the sum of the vectors a and b shown in Figure 5.

2 b SOLUTION First we translate b and place its tail at the tip of a, being careful to draw a copy
of b that has the same length and direction. Then we draw the vector a + b [see Figure
6(a)] starting at the initial point of a and ending at the terminal point of the copy of b.

: FIGURE 5 Alternatively, we could place b so it starts where a starts and construct a + b by the
| Parallelogram Law as in Figure 6(b).

a a
Visual 12.2 shows how the Triangle and b
’ Parallelogram Laws work for various a+b
) vectors u and v. b
FIGURE 6 (a) b Ml

It is possible to multiply a vector by a real number c. (In this context we call the real
3 number ¢ a scalar to distinguish it from a vector.) For instance, we want 2v to be the same
3 vector as v + v, which has the same direction as v but is twice as long. In general, we mul-
3 tiply a vector by a scalar as follows.

Definition of Scalar Multiplication If ¢ is a scalar and v is a vector, then the scalar mul-
tiple cv is the vector whose length is | ¢ | times the length of v and whose direction
/ is the same as v if ¢ > 0 and is opposite to v if ¢ << 0. If c = 0 or v = 0, then
1
5 cv =0.

This definition is illustrated in Figure 7. We see that real numbers work like scaling fac-
/ tors here; that’s why we call them scalars. Notice that two nonzero vectors are parallel if
—-v —-1.5v

they are scalar multiples of one another. In particular, the vector ~v = (—1)v has the same
length as v but points in the opposite direction. We call it the negative of v.
By the difference u — v of two vectors we mean

FIGURE 7
Scalar multiples of v u—v=u-+(—v)
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Drawing u — v

Y (a;,a,)
a
(4]
a={a, a;)
z
(ay, a3, a3)

|

|

|

|
<!
~

a={a,a,,a;)

IGURE 11

So we can construct u — v by first drawing the negative of v, —v, and then adding it to ,,
by the Parallelogram Law as in Figure 8(a). Alternatively, since v + (u — v) = u, the vec.
tor u — v, when added to v, gives u. So we could construct u — v as in Figure 8(b) by
means of the Triangle Law.

v u
u—v
v >
u
(a) (b)

EXAMPLE 2 If a and b are the vectors shown in Figure 9, draw a — 2b.

SOLUTION We first draw the vector —2b pointing in the direction opposite to b and twice
as long. We place it with its tail at the tip of a and then use the Triangle Law to draw
a + (—2b) as in Figure 10.

—2b

\ ;

A' a—2b
FIGURE 9 FIGURE 10 i |
|||| Companents

For some purposes it’s best to introduce a coordinate system and treat vectors algebra-
ically. If we place the initial point of a vector a at the origin of a rectangular coordinate
system, then the terminal point of a has coordinates of the form (ay, a2) or (ai, as, a3), 3
depending on whether our coordinate system is two- or three-dimensional (see Figure 11). ] y
These coordinates are called the components of a and we write 3

a = {(a, az) or a = (a,, a as)

We use the notation (ai, a,) for the ordered pair that refers to a vector so as not to confuse & a
it with the ordered pair (ai, a;) that refers to a point in the plane. 3

_)For instance, the vectors shown in Figure 12 are all equivalent to the vector .

OP = (3, 2) whose terminal point is P(3, 2). What they have in common is that the ter- ‘&

minal point is reached from the initial point by a displacement of three units to the right § S
and two upward. We can think of all these geometric vectors as representations of the 3 0 a,

Y (4,3) z FIGURE 14
1
position
(1,3 {P3.2) vector of P
r P \ Play,ay a5)
0 X -
P Blx+a,,y+ayz+ay) = I
: I
a la,
x ¥ Alxy,z) |
—
FIGURE 12 FIGURE 13 %
Representations of the vector a = (3,2) Representations of a = {(g,, a,, a,) FIGURE 15
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algebraic vector a = (3, 2). The particular representation O_P) from the origin to the point
P(3, 2) is called the position vector of the point P.

In three dimensions, the vector a = O_P) = (ay, az, a3y is the position _vgctor of the
point P(a,, a2, as). (See Figure 13.) Let’s consider any other representation AB of a, where
the initial point is A(xy, y|, z;) and the terminal point is B(xz, y2, z2). Then we must have
xitai=x, yint+a;=y, and z; + a3 = z; and SO a; = x; — x1, a2 = y2 — yi, and
as = z; — z;. Thus, we have the following result.

Giv_e)n the points A(xy, y1, z) and B(x2, y2, z2), the vector a with represen-
tation AB is

a=(x;—x,Y2— Y22~ 21)

EXAMPLE 3 Find the vector represented by the directed line segment with initial point
A(2, —3, 4) and terminal point B(—2, 1, 1).

SOLUTION By (1), the vector corresponding to AB is

a=(-2-21-(-3),1-4)=(-4,4,-3) i

The magnitude or length of the vector v is the length of any of its representations and
is denoted by the symbol | v| or || v||. By using the distance formula to compute the length
of a segment OP, we obtain the following formulas.

The length of the two-dimensional vector a = (ai, a;) is =
la| = V& F &
The length of the three-dimensional vector a = {ay, a», as) is

(a; +bna,+b,) |a| = Va? + aZ + a2

How do we add vectors algebraically? Figure 14 shows that if a = (a., a,;) and
b = (b, by), then the sumisa + b = {(a; + b, a;, + b>), at least for the case where the
components are positive. In other words, to add algebraic vectors we add their compo-
nents. Similarly, to subtract vectors we subtract components. From the similar triangles in
Figure 1S we see that the components of ca are ca, and ca,. So to multiply a vector by a
scalar we multiply each component by that scalar.

" Ifa = (ai,a;) and b = (b}, by), then
at+b={(a + b,a, + by) a—b={(a—b,a,— b))
ca = {cay, caz)
Similarly, for three-dimensional vectors,
a, (av, az,a3) + (b, by, bs) = (a1 + by, a; + by, a3 + bs)
(a1, a2, a3) — (b1, by, b3) = (ai — by, a, — by, a3 — by)
c{ai, az, az) = {cai, cap, cas)
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llil Vectors in n dimensions are used to list vari-
ous quantities in an organized way. For instance,
the components of a six-dimensional vector

P= {pi. D2, D3, Dss PLP&)

might represent the prices of six different ingre-
dients required to make a particular product.
Four-dimensional vectors {x, y, z, £} are used in
relativity theory, where the first three compo-
nents specify a position in space and the fourth
represents time.

c

@a+b)+c
=a+((-+c)

=2

P a

FIGURE 16

EXAMPLE 4 Ifa = (4,0,3) andb = (—2,1,5), find |a| and the vectorsa + b, a - b,
3b, and 2a + 5b.

SOLUTION |a] =42+ 02 +32=,25=5
a+b=1(4023)+(-215)
—(4-2,0+1,3+5)=1(21,8)
a—b=1(4073)—(-215)
=(4-(-2,0—1,3-5) =(6,—1,-2)
3b = 3(-2,1,5) = (3(—2),3(1),3(5)) = (—6,3,15)
2a + 5b =2(4,0,3) + 5(-2,1,5)
= (8,0,6) + (—10,5,25) = (=2,5,31) -

We denote by V- the set of all two-dimensional vectors and by V3 the set of all three-
dimensional vectors. More generally, we will later need to consider the set V, of 1|
n-dimensional vectors. An n-dimensional vector is an ordered n-tuple:

a—= (al, a, ... ,CZ">

where a,, aa, . . . , a, are real numbers that are called the components of a. Addition and
scalar multiplication are defined in terms of components just as for the cases n = 2 and
n =3 '

Properties of Vectors 1If a, b, and ¢ are vectors in V, and ¢ and d are scalars, then

l.a+tb=b+a 2a+tb+c)=(@+b)te

3.a+0=a f.a+(—a)=0

5. cla+b)=ca+cb 6. (c + d)a=ca + da

7. (cd)a = c(da) 8 la=a !
These eight properties of vectors can be readily verified either geometrically or alge- i

braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral-
lelogram Law) or as follows for the case n = 2:

a+b={a,a) + (b,b:) = {a +b,a + by)
= (b, + a;, b, + a;) = {(by, b)) + {a, az)

=b+a

We can see why Property 2 (the associative law) is _t)rue by looking at Figure 16 and
applying the Triangle Law several times: The vector PQ is obtained either by first con-
structing a + b and then adding ¢ or by adding a to the vector b + ¢.

Three vectors in V; play a special role. Let

i=(1,00) i=(,1,0) k=(0,01)




FIGURE 17
ud basis vectors in V; and V;

(ay,a,)
a -

a,J
a,i x
a=aqi+ta,j

it a,j+ask
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Then i, j, and k are vectors that have length 1 and point in the directions of the positive
x-, y-, and z-axes. Similarly, in two dimensions we define i = (1,0) and j = {0, 1). (See
Figure 17.)

(@ )
If a = {a,, a, as), then we can write

a = (a, az,a3) = a,0,0) + 0,a,,0) + (0,0, a;)
= a[<1, 0,0> + az<0, 1,0) + a;(O, O, 1)

a=aqi+ a;j+ a:k

Thus, any vector in V3 can be expressed in terms of the standard basis vectors i, j, and
k. For instance,

(1, =2,6) =i—2j + 6k

Similarly, in two dimensions, we can write

a= <a|,az> =(l|i + azj

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with
Figure 17.

EXAMPLE S [fa=1i+ 2j — 3k and b = 4i + 7k, express the vector 2a + 3b in terms
of i, j, and k.
SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

2a + 3b =23 + 2j — 3k) + 3(4i + 7k)
=2i+4j — 6k + 12i + 21k = 14i + 4j + 15k ]

A unit vector is a vector whose length is 1. For instance, i, j, and k are all unit vectors.
In general, if a 7 0, then the unit vector that has the same direction as a is

1 a
u=-——a=——
EY |a

In order to verify this, we let ¢ = 1/ | a | Then u = ca and c is a positive scalar, so u has
the same direction as a. Also

1
luf =[ca| = |c|[|la| =7 |a| =1
|a]
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FIGURE 20

EXAMPLE 6 Find the unit vector in the direction of the vector 2i — j — 2k.
SOLUTION The given vector has length

|2i —j — 2k| =27 + (1P + (-2 =0 =3

so, by Equation 4, the unit vector with the same direction is

1i-j-20=%i-3j-3k

||H Applications

Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see
how they describe the velocity and acceleration of objects moving in space. Here we look
at forces.

A force is represented by a vector because it has both a magnitude (measured in pounds
or newtons) and a direction. If several forces are acting on an object, the resultant force
experienced by the object is the vector sum of these forces.

EXAMPLE 7 A 100-1b weight hangs from two wires as shown in Figure 19. Find the ten-
sions (forces) T, and T, in both wires and their magnitudes.

SOLUTION We first express T, and T, in terms of their horizontal and vertical components.
From Figure 20 we see that

T, = —|T:|cos 50°i + | T, |sin 50° j

T, = |T,|cos 32°i + | T,|sin 32°j
The resultant T, + T of the tensions counterbalances the weight w and so we must have
T, + T, = —w = 100j
Thus
{(=|T:|cos 50° + | T| cos 32°) i + {| T, |sin 50° + | T.|sin 32°) j = 100j
Equating components, we get
—|T\|cos 50° + | T|cos 32° = 0
| Ty |sin 50° + |T,|sin 32° = 100

Solving the first of these equations for | T | and substituting into the second, we get

T 50°
[T, | sin 50° + 1T cos 50° ‘Lzo;zo sin 32° = 100
So the magnitudes of the tensions are
100
|T,| = =~ 85.64 Ib

sin 50° + tan 32° cos 50°

| Ty|cos 50°

=~ 6491 1b
cos 32°

and ITzl =

Substituting these values in (5) and (6), we obtain the tension vectors

T, = —55.05i + 65.60j T, = 55.05i + 34.40j il
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#:], Are the following quantities vectors or scalars? Explain.
(a) The cost of a theater ticket

(b) The current in a river

(c) The initial flight path from Houston to Dallas

(d) The population of the world

-9, What is the relationship between the point (4, 7) and the
vector {4, 7)? lllustrate with a sketch.

: [ Name all the equal vectors in the parallelogram shown.

A B

D C
" 4, Write each combination of vectors as a single vector.
—> —> —> —>
@ PQ + OR (b) RP + PS
© 05 — S (& RS + SP + PQ

R

5. Copy the vectors in the figure and use them to draw the
following vectors.
@ut+v
v+ w

N

6. Copy the vectors in the figure and use them to draw the follow-

b)u-—v
dw+v+u

ing vectors.

@a+b b)a—>b

© 2a ) —3b

€ 2a+hb (f)b — 3a
b

7"'2 i Find a yector a with representation given by the directed
_hﬂe segment AB. Draw AB and the equivalent representation start-
10g at the origin.

1. 42,3), B(-2,1) 8. A(~-2,-2), B(,3)

10. A(=2,2), B(3,0)
12. A(4,0, —2), B(4,2,1)

a a a Q a )

9. A(—1,~-1), B(—3,4)
IH A(0,3,1), B(23,-1)
1316 m Find the sum of the given vectors and illustrate
geometrically.

13. (3,—1), (—2,4) 4. (=2,-1), (5,7
15. €0, 1,2), €0,0,—3) 16. (—1,0,2), (0,4,0)
17-22 i Find |a|,a + b,a — b, 2a, and 3a + 4b.

17. a= (—4,3), b=(6,2)

18. a=2i—-3j, b=1i+5j
19.a=(6,2,3), b=(~1,5-2)

20, a=(-3,-4,~-1), b=(6,2,~-3)
2l.a=i—-2j+k b=j+2k
2. a=3i—-2k, b=i-j+k

s a a a a o o a a a a o

23-25 i Find a unit vector that has the same direction as the given
vector.

23. (9, —5)
955 8i — j + 4k

a a a ) a

4. 12i — 5j

a a a o ) ) a

26. Find a vector that has the same direction as {—2, 4, 2 but has
length 6.

If v lies in the first quadrant and makes an angle 7/3 with the
positive x-axis and | v| = 4, find v in component form.

28. If a child pulls a sled through the snow with a force of 50 N
exerted at an angle of 38° above the horizontal, find the
horizontal and vertical components of the force.

Two forces F; and F, with magnitudes 10 Ib and 12 Ib act

on an object at a point P as shown in the figure. Find the
resultant force F acting at P as well as its magnitude and its
direction. (Indicate the direction by finding the angle ¢ shown
in the figure.)
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30. Velocities have both direction and magnitude and thus are

3i.

32.

33.

3.

vectors. The magnitude of a velocity vector is called speed.
Suppose that a wind is blowing from the direction N45°W at a
speed of 50 km/h. (This means that the direction from which
the wind blows is 45° west of the northerly direction.) A pilot
is steering a plane in the direction N60°E at an airspeed (speed
in still air) of 250 km/h. The true course, or track, of the plane
is the direction of the resultant of the velocity vectors of the
plane and the wind. The ground speed of the plane is the mag-
nitude of the resultant. Find the true course and the ground
speed of the plane.

A woman walks due west on the deck of a ship at 3 mi/h. The
ship is moving north at a speed of 22 mi/h. Find the speed and
direction of the woman relative to the surface of the water.

Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has a
mass of 5 kg. The ropes, fastened at different heights, make
angles of 52° and 40° with the horizontal. Find the tension in
each wire and the magnitude of each tension.

. a0
520 P
3 mm‘\_t / 5m

A clothesline is tied between two poles, 8 m apart. The line

is quite taut and has negligible sag. When a wet shirt with

a mass of 0.8 kg is hung at the middle of the line, the midpoint
is pulled down § cm. Find the tension in each half of the
clothesline.

The tension T at each end of the chain has magnitude 25 N.
What is the weight of the chain?

35.

6.

If A, B, and C are the vertices of a triangle, find

—> —> —>

AB + BC + CA.

Let C be the point on the line segment AB that is twice as far

A — —> —>
from B as itis from A. Ifa = OA, b = OB, and ¢ = OC, show
thatc = 2a + 1b.

3% (a) Draw the vectorsa = (3,2),b = (2, —1),and ¢ = (7, Iy

(b) Show, by means of a sketch, that there are scalars s and ;
such that ¢ = sa + ¢b.

(c) Use the sketch to estimate the values of s and ¢.

(d) Find the exact values of s and .

38. Suppose that a and b are nonzero vectors that are not paralle]

and c is any vector in the plane determined by a and b. Give
a geometric argument to show that ¢ can be written as

= sa + tb for suitable scalars s and ¢. Then give an argy-
ment using components.

If r = {x, y,z) and ro = {xo, Yo, Zo), describe the set of all
points (x, y, z) such that |r — ro| = 1.

40. If r = (x,y), ry = {x,, y1), and r; = (x3, y;}, describe the

41.

set of all points (x, y) such that [r ~ r,| + |r — 2| =,
where k > |r; — 2.

Figure 16 gives a geometric demonstration of Property 2 of
vectors. Use components to give an algebraic proof of this
fact for the case n = 2.

42. Prove Property 5 of vectors algebraically for the case n = 3.

Then use similar triangles to give a geometric proof.

43¢ Use vectors to prove that the line joining the midpoints of two

4.

sides of a triangle is parallel to the third side and half its length.

Suppose the three coordinate planes are-all mirrored and a
light ray given by the vector a = {a,, a2, a;) first strikes the
xz-plane, as shown in the figure. Use the fact that the angle of
incidence equals the angle of reflection to show that the direc-
tion of the reflected ray is given by b = {(a,, —as, as). Deduce
that, after being reflected by all three mutually perpendicular
mirrors, the resulting ray is parallel to the initial ray. (American
space scientists used this principle, together with laser beams
and an array of corner mirrors on the Moon, to calculate very
precisely the distance from the Earth to the Moon.)




1| 12.3 The Dot Product

So far we have added two vectors and multiplied a vector by a scalar. The question arises:
[s it possible to multiply two vectors so that their product is a useful quantity? One such
product is the dot product, whose definition follows. Another is the cross product, which

is discussed in the next section.

¥ Definition If a = {a\, a2, a3) and b = {by, b,, b3), then the dot product of a
and b is the number a - b given by

a-b=ab + ab + asb;

Thus, to find the dot product of a and b we multiply corresponding components and
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot
product is sometimes called the scalar product (or inner product). Although Definition |
is given for three-dimensional vectors, the dot product of two-dimensional vectors is

defined in a similar fashion:

{ai, az) * (b, b)) = a\b| + axb,

EXAMPLE | :
(2,4) - (3,~1) =203) + 4(-1) =2

(—1,7,4) - (6,2, 1) = (=1)(6) + 72) + 4(~1) =6
(i+2j-3K-2j—k =10) +202) + (-3)(-1) =7 s

The dot product obeys many of the laws that hold for ordinary products of real num-
bers. These are stated in the following theorem.

iZ| Properties of the Dot Product If a, b, and ¢ are vectors in V3 and c is a scalar, then

l..a-a=|a) 22a-b=b-a
J.a-b+c¢)=a-b+a-c 4. (ca)-b=c(a-b)=a- (ch)
5. 0-a=0

These properties are easily proved using Definition 1. For instance, here are the proofs
of Properties | and 3:
l.Lara=aj +d} +a}=|al
a-(b+c)={(an,aas) (b +c,br+ cbs+ c3)
=ab + c|) + axb, + ) + as3(bs + )
=a\b, + aic; + ab; + axcx + aszby + ascs
= (a1by + axby + asbs) + (a1 + axe; + ascy)
=a‘b+a-c

The proofs of the remaining properties are left as exercises.

The dot product a - b can be given a geometric interpretation in terms of the angle
between a and b, which is defined to be the angle between the representations of a and
b that start at the origin, where 0 < 6 < 7. In other words, 8 is the angle between the
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line segments O_Z and O_E in Figure 1. Note that if a and b are parallel vectors, thep 0 <
orf=m.

The formula in the following theorem is used by physicists as the definition of the dog
product.

Theorem If 6 is the angle between the vectors a and b, then

a-b=|a||b|cos 8

FIGURE 1

Proof If we apply the Law of Cosines to triangle OAB in Figure 1, we get
|AB|*=|OA|* + |OB|* = 2|OA|| OB| cos 6

(Observe that the Law of Cosines still applies in the limiting cases when 6 = 0 or 7, o
=0orb =0)But|OA| = |a|,|OB| = |b|, and |AB| = |a — b|, so Equation 4
becomes

l]a—b|*=|a]*+ |b|*— 2]a||b]|cos @

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this equa-
tion as follows:
la—b’=(@—-b)-(a—b)

=a-a—a‘b-b-a+b-b

=|al*—2a-b + |b|?
Therefore, Equation 5 gives

|a]>* —2a-b+ |b|*=|al* + |b|> — 2|a||b]|cos 8

Thus —2a-b=—2|a||b|cos g
or a-b=|al|b|cos @ il

EXAMPLE 2 If the vectors a and b have lengths 4 and 6, and the angle between them is
w/3, finda - b.

SOLUTION Using Theorem 3, we have

a-b=|al||b|cos(m/3)=4-6-3=12 -

The formula in Theorem 3 also enables us to find the angle between two vectors.

Corollary If @ is the angle between the nonzero vectors a and b, then

a-b
EXLY

cos @ =

EXAMPLE 3 Find the angle between the vectorsa = (2,2, —1) and b = (5, —3,2).
SOLUTION Since

la|= V2T + 22+ (1 =3 and |b|=57F (32 +2:=138
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and since
a-b=20)+2(-3)+ (-1DQ2)=2

we have, from Corollary 6,

0= =
T Talb] 3438

So the angle between a and b is

2
= | = °
6 = cos ( 3758 8) 1.46 (or 84°)

Two nonzero vectors a and b are called perpendicular or orthogonal if the angle
between them is # = 7/2. Then Theorem 3 gives

a-b=|al|b|cos(wm/2) =0

and conversely if a - b = 0, then cos 8 = 0, so § = /2. The zero vector 0 is considered
to be perpendicular to all vectors. Therefore, we have the following method for determin-
ing whether two vectors are orthogonal.

Two vectors a and b are orthogonal if and only ifa - b = 0.

EXAMPLE 4 Show that 2i + 2j — k is perpendicular to 5i — 4j + 2k.
SOLUTION Since %
Qi+2j-Kk)-(5i —4j+2k)=205) +2(-49) + (-D2)=0

b these vectors are perpendicular by (7). i
/ abh=0 Because cos 6 > 0if 0 <9< w/2andcos 8 < 0if 7/2 <@ < 7, wesee thata-b
b is positive for 8 < 7/2 and negative for > 7/2. We can think of a - b as measuring
the extent to which a and b point in the same direction. The dot product a - b is positive

/ a-bh<0 if a and b point in the same general direction, 0 if they are Aperpendicular, and negative if
b they point in generally opposite directions (see Figure 2). In the extreme case where a and

b point in exactly the same direction, we have 8 = 0, so cos & = | and
a-b=|al|b]

2112.3A shows an animation If a and b point in exactly opposite directions, then 6 = 7 and so cos § = —1 and
gure 2. a-b=—[al|b]

|||| Mirection Angles and Directiun Cosines

The direction angles of a nonzero vector a are the angles «, 3, and 7 (in the interval {0, 77])
that a makes with the positive x-, y-, and z-axes (see Figure 3 on page 8§10).

The cosines of these direction angles, cos «, cos 3, and cos <, are called the direction
cosines of the vector a. Using Corollary 6 with b replaced by i, we obtain

a-i a;

cos a = — = —

alli] |a
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FIGURE 3

 Visual 12.38 shows how Figure 4
changes when we vary a and b.

(This can also be seen directly from Figure 3.) Similarly, we also have

By squaring the expressions in Equations 8 and 9 and adding, we see that

cos’a + cos’B + cos’y = 1

We can also use Equations 8 and 9 to write

)

a = (a,azas) = {|a| cos a,

= |a|{cos a, cos B, cos y)

Therefore

—a = (cos a, cos 3, cos y)

|a

which says that the direction cosines of a are the components of the unit vector in the direc-
tion of a.

i
l

EXAMPLE 5 Find the direction angles of the vector a = (1, 2, 3).
SOLUTION Since |a| = /1% + 2% + 3% = /14, Equations 8 and 9 give

1 2 3
cosa=—\/ﬁ COSB=W COS’Y‘:T--'
and so
= co = 74° B =cos™! 2 =~ 58° = cos™! 2 = 37°
*TE AV ® A\ Vi VTS A\ Via
|||| Projections

Figure 4 shows representations PQ and PR of two vectors a and b with the same initial
point P. If § is the foot of the perpendicular from R to the line containing PQ then the
vector with representation PS is called the vector projection of b onto a and is denoted
by proj, b.

FIGURE 4
Vector projections

The scalar projection of b onto a (also called the component of b along a) is defined
to be the magnitude of the vector projection, which is the number | b | cos 6, where 6 is the




y :|b|cos [

IGURE 5
calar projection

FIGURE 6
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angle between a and b. (See Figure 5; you can think of the scalar projection of b as being
the length of a shadow of b.) This is denoted by comp, b. Observe that it is negative if
7/2 < 6 < . The equation

a-b=|al|b|cos 6 =|a|(|b]cos 0)

shows that the dot product of a and b can be interpreted as the length of a times the scalar
projection of b onto a. Since

-b
asb _ a
la|  |a]

l

|b|cos § =

the component of b along a can be computed by taking the dot product of b with the unit
vector in the direction of a. We summarize these ideas as follows.

a-b

|a|

Scalar projection of b onto a: comp, b =

L . a-b) a a-b
Vector projection of b onto a: proja b = (—) T =75 a
lal / [a] [aP

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.

EXAMPLE 6 Find the scalar projection and vector projection of b = (1, 1, 2) onto
={-2,3,1).

SOLUTION Since |a| = /(—2)? + 32 + 12 = /14, the scalar projection of b onto a is
a-b _ (=2)1)+3()+1(2) 3

Compab = |a| = \/1—4 \/ﬁ

The vector projection is this scalar projection times the unit vector in the direction of a:

o> a3 [ 3093
prok 14 [a| 14 7' 14" 14 -

One use of projections occurs in physics in calculating work. In Section 6.4 we defined
the work done by a constant force F in moving an object through a distance d as W = Fd,
but this applies only when the force is directed along the line of motion of the object.
Suppose, however, that the constant force is a vector F = PR pointing in some other direc-
tion as in Figure ( 6. If the force moves the object from P to Q, then the displacement
vector is D = PQ. The work done by this force is defined to be the product of the com-
ponent of the force along D and the distance moved:

W= (|F|cos 6)|D]

But then, from Theorem 3, we have

W= |F||D|cos§=F-D
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Thus, the work done by a constant force F is the dot product F + D, where D is the dis.
placement vector.

EXAMPLE 7 A crate is hauled 8 m up a ramp under a constant force of 200 N applied 4
an angle of 25° to the ramp. Find the work done.

F 4 SOLUTION If F and D are the force and displacement vectors, as pictured in Figure 7, they
=D the work done is
W=F-D = |F||D| cos 25°
FIGURE 7 = (200)(8) cos 25° = 1450 N-m = 145017 s
EXAMPLE 8 A force is given by a vector F = 3i + 4j + 5k and moves a particle from
the point P(2, 1, 0) to the point Q(4, 6, 2). Find the work done.
—>
SOLUTION The displacement vector is D = PQ = (2, 5, 2, so by Equation 12, the work
done is
W:F' D = <3v4w5> * <27512>
=6+ 20+ 10 =36
If the unit of length is meters and the magnitude of the force is measured in newtons, i
then the work done is 36 joules. e (©
. i 25. Use
Il 12.3 Exercises 1«
it ]
M 2. For
1. Which of the following expressions are meaningful? Which are 11-12 wn [f u is a unit vector, findu + v and u - w. ; ortl
meaningless? Explain. = 12 ¥ o
@ f-b)-c () (a- bl n. ' h § wir
(© [a|(b-c) (a-(b+c) 4 B Fuo
(e)ab+c F)la] -+ o) u v v 4 \
2. Find the dot product of two vectors if their lengths are 6 w T T v 29-33
and ; and the angle between them is 7/4. & vector.
5 |
3~10 mi Find a - b. , B3
3.a=(4-1), b=(36) c e e e e e e e e e e 0. <
. . 2i
4.a={},4), b=(-8-3) 13. (2) Show thati-j=j-k=k-i=0. _ '
I S A . _ _,32'2.
5.a=(50-2), b=(3—1,10) (b) Show thati-i=j-j=k-k=1. ] i
14. A street vendor sells a hamburgers, b hot dogs, and ¢ soft 3 3. (¢
6. a=(5253s), b={(—150) drinks on a given day. He charges $2 for a hamburger, $1.50 q .
. . . for a hot dog, and $1 for a soft drink. If A = {a, b, ¢) and
La=i—-2j + = A
T.a=i-2j+3k b=5i _+ ok P = (2, 1.5, 1), what is the meaning of the dot product A + P7 W Ir
8.a=4j —3k, b=2i+4j+6k thi
15~20 m Find the angle between the vectors. (First find an exact :
9. |a| =12, |b| =15, the angle between a and b is 7/6 expression and then approximate to the nearest degree.) : 35-40
10. |a| =4, |b| =10, the angle between a and b is 120° 15.a=(3,4), b=(512) ] 5o

e e e e e e e e e e 16. a={(/3.1), b=¢0,5) 4 %a




= (1,2,3),
= (6, —3,2),
j+k b=i+2j—3k

b= (4,0 -1)
b=(21-2)

2i—j+k b=3i+2j—k

a o o Bl E) B a a a a

Il Find, correct to the nearest degree, the three angles of the
with the given vertices.

,0), BG3,6), C(-1.4)
L1 1), E(-2,4,3),

a a a o a a a a o a

F(1,2, —1)

Il Determine whether the given vectors are orthogonal,

a=(-523,7)., b=(6,-82)
a=(4,6), b= (-32)

: ~i+2j+5k b=3i+4j—k
2i+6j—4k b=-3i-9j+6k
o (=3,9,6), v=/(4, —12, -8)
Du=i—-j+2k v=2i—j+k
Hu={abc), v=(-ba0)

) o o a a 2 a a a o a

15 Use vectors to decide whether the triangle with vertices
P(1, =3, =2), 0(2,0, —4), and R(6, —2, —5) is right-angled.

%. For what values of b are the vectors (—6,b,2) and (b, b*, b)
orthogonal?

1 Find a unit vector that is orthogonal to bothi + jand i + k.

8. Find two unit vectors that make an angle of 60° with
v=(3,4).

#-33 i Find the direction cosines and direction angles of the
wector. (Give the direction angles correct to the nearest degree.)

8 (3,4,5)

0L, =2, -1)
1. 2i + 3j — 6k
L2i-j+2k

B (c,c,c), wherec >0

) o o 3 a a a a o o a a

. If a vector has direction angles @ = /4 and 8 = 7/3, find the
third direction angle 7.

5-40 wi Find the scalar and vector projections of b onto a.
boa=(3,-4), b=(50)
ha=(1,2), b=(-4,1)

SECTION 12.3 THE DOT PRODUCT {lf 813

.a=(4,2,0), b=(11)

37

38.a=(-1,-2,2), b=¢(33,4)
Y. a=i+k, b=i—j

40. a=2i—3j+k, b=i+6j—2k

42
“3;

a4,

45.

46.

47.

48.

50.

51

52,

53.

a o a a o o o a o a a

1 Show that the vector orth, b = b — proj, b is orthogonal to a.

(It is called an orthogonal projection of b.)

For the vectors in Exercise 36, find orth, b and illustrate by
drawing the vectors a, b, proja b, and orth , b.

Ifa = (3,0, — 1), find a vector b such that comp, b = 2.

Suppose that a and b are nonzero vectors.
(a) Under what circumstances is comp, b = compy, a?
(b) Under what circumstances is proj, b = projp a?

A constant force with vector representation

F = 10i + 18j — 6k moves an object along a straight line
from the point (2, 3, 0) to the point (4, 9, 15). Find the work
done if the distance is measured in meters and the magnitude of
the force is measured in newtons.

Find the work done by a force of 20 Ib acting in the direction
N50°W in moving an object 4 ft due west.

A woman exerts a horizontal force of 25 Ib on a crate as she
pushes it up a ramp that is 10 ft long and inclined at an angle
of 20° above the horizontal. Find the work done on the box.

A wagon is pulled a distance of 100 m along a horizontal path
by a constant force of 50 N. The handle of the wagon is held at
an angle of 30° above the horizontal. How much work is done?

; Use a scalar projection to show that the distance from a point

Py(x,, y1) to the line ax + by + ¢ = 0'is

|axi + by, + ¢
Ja? + b?

Use this formula to find the distance from the point (—2, 3) to
the line 3x — 4y + 5 =0.

Ifr = {(x,y,z),a = {ai, a», as), and b = (b, by, b3), show
that the vector equation (r — a) - (r — b) = 0 represents a
sphere, and find its center and radius.

Find the angle between a diagonal of a cube and one of its
edges.

Find the angle between a diagonal of a cube and a diagonal of
one of its faces.

A molecule of methane, CHy, is structured with the four hydro-
gen atoms at the vertices of a regular tetrahedron and the car-
bon atom at the centroid. The bond angle is the angle formed
by the H— C—H combination,; it is the angle between the
lines that join the carbon atom to two of the hydrogen atoms.
Show that the bond angle is about 109.5°. [Him‘: Take the
vertices of the tetrahedron to be the points (1, 0, 0), (0, 1, 0},
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(0,0, 1), and (1, 1, 1) as shown in the figure. Then the centroid $%; Use Theorem 3 to prove the Cauchy-Schwarz Inequaliry:
is (3.3.3)

- la-b|<]|a][b]

58. The Triangle Inequality for vectors is
la+b]<]|a|+|b|

(a) Give a geometric interpretation of the Triangle Inequality,

(b) Use the Cauchy-Schwarz Inequality from Exercise 57 to
prove the Triangle Inequality. [Hinz: Use the fact that
|a+b|*=(a+b)-(a+b)and use Property 3 of the
dot product.]

X

54. If c = |a|b + | b|a, where a, b, and ¢ are all nonzero
vectors, show that ¢ bisects the angle between a and b. 59. The Parallelogram Law states that

55. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

la+bl+]a—bl=2]al +2|bf
56. Suppose that all sides of a quadrilateral are equal in length and
opposite sides are parallel. Use vector methods to show that the (a) Give a geometric interpretation of the Parallelogram Law,
diagonals are perpendicular. (b) Prove the Parallelogram Law. (See the hint in Exercise 58))

/| 12.4 The cross Product

The cross product a X b of two vectors a and b, unlike the dot product, is a vector. For
this reason it is also called the vector product. Note that a X b is defined only when a and
b are three-dimensional vectors.

Definition If a = (a,, a», a3) and b = (b, b, b3), then the cross product of a
and b is the vector

axXb= <a2b3 — asb,, asby — a\bs, a,1b; — a3b1>

This may seem like a strange way of defining a product. The reason for the particular
form of Definition 1 is that the cross product defined in this way has many useful proper-
ties, as we will soon see. In particular, we will show that the vector a X b is perpendicu-
lar to both a and b.

In order to make Definition 1 easier to remember, we use the notation of determinants.
A determinant of order 2 is defined by

a b
=ad — bc
c
2 1
For example, 6 4|~ 2(4) - 1(—=6) = 14
A determinant of order 3 can be defined in terms of second-order determinants as
follows:
a, a as
b, b by b b, b,
b\ bz b} = - } — : } as ! -
Cr €3 Cy C3 T €2

c €2 C3




SECTION 12.4 THE CROSS PRODUCT fii 815

Observe that each term on the right side of Equation 2 involves a number a; in the first row
of the determinant, and a; is multiplied by the second-order determinant obtained from the
left side by deleting the row and column in which a; appears. Notice also the minus sign
in the second term. For example,

30
-5 4

0 1
4 2

31

-2
-5 2

0 11=1 + (—-1)

100 - 4) —2(6 +5) + (=1)(12 — 0) = —38

If we now rewrite Definition 1 using second-order determinants and the standard basis
vectors i, j, and k, we see that the cross product of the vectorsa = a,i + a;j + a;k and
b =bii+ byj+ bskis

a as

b, bs

a, as

b b

a a

k
by b,

aXb= i— it

In view of the similarity between Equations 2 and 3, we often write

i j kK
aXb= a, a as
b, b, b

Although the first row of the symbolic determinant in Equation 4 consists of vectors, if we
expand it as if it were an ordinary determinant using the rule in Equation 2, we obtain
Equation 3. The symbolic formula in Equation 4 is probably the easiest way of remem-
bering and computing cross products.

EXAMPLE 1 Ifa = (1,3,4) and b = (2,7, —5), then

1] k
aXb=|1 3 4
2 7 =5
3 4] . | 4 1 3
= i— J k
7 =5 2 -5 2 7

=(-15-28)i—(-5-8)j+ (T~ 6 k= —43i + 13 + k uisas

EXAMPLE 2 Show that a X a = 0 for any vector a in Vi.
SOLUTION Ifa = (al, as, a3>, then

i j k
aXa=|a a a
a a; as

= (aza; — azaz)i — (@as — aza;) j + (@a2 — a:ai) k

=0i—-0j+0k=4¢0 i

!

i
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One of the most important properties of the cross product is given by the following
theorem.

r Thearem The vector a X b is orthogonal to both a and b.

Proof In order to show that a X b is orthogonal to a, we compute their dot product a5
follows:

a as a, as a, a

b, bs b, b; b b
= aa:bs — asb2) — ax(abs — asb)) + asla by — axb))

(@axb)-a= ay — a + as

= aqya by — a\bras — a\axby + biasas + abas — biaas
=0

A similar computation shows that (a X b) - b = 0. Therefore, a X b is orthogonal to
both a and b. il

If a and b are represented by directed line segments with the same initial point (as in
Figure 1), then Theorem 5 says that the cross product a X b points in a direction perpen-
dicular to the plane through a and b. It turns out that the direction of a X b is given by the
right-hand rule: If the fingers of your right hand curl in the direction of a rotation (through
an angle less than 180°) from a to b, then your thumb points in the direction of a X b,

Now that we know the direction of the vector a X b, the remaining thing we need to
complete its geometric description is its length [a X b|. This is given by the following
theorem.

6] Theorem If 6 is the angle between a and b (so 0 < 6 < ), then

Caad

FIGURE 1

|a X b|=]al|b]sin 6.

O Vis;alr:m shows how a X bchanges  proot From the definitions of the cross product and length of a vector, we have 2
as b changes.

'a X bll = (agb3 - a3b2)2 + (a3b1 - alb})z + (albz - azb()z

a%b% - 2(12(13172173 + a%b% + (l%b?[ - 201031)1173 + afb%

f

+ atb} ~ 2a,a:b1b; + a3bi
= (ai +di +a3)(bl + b3 + b3) — (a1by + asby + ashs)’
— [aP/b] = (a- bY
=[aPIb* — |a|}b[*cos’@  (by Theorem [2.3.3)
= |a?b[*(1 — cos’6)
— af|b|?sin®6
Taking square roots and observing that 1/sin?6 = sin @ because sin § = 0 when

0 <60 = 7, we have
|a X b|=|al|b|sin6 i

Geometric characterization ofa X b Since a vector is completely determined by its magnitude and direction, we can now say
that a X b is the vector that is perpendicular to both a and b, whose orientation is deter-
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mined by the right-hand rule, and whose length is |a || b | sin 6. In fact, that is exactly how
physicists define a X b.

iZ| Corollary Two nonzero vectors a and b are parallel if and only if

axXb=0

Proof Two nonzero vectors a and b are parallel if and only if 8 = 0 or 7. In either case
sin @ = 0, so |a X b| = 0 and therefore a X b = 0. e

The geometric interpretation of Theorem 6 can be seen by looking at Figure 2. If a and
b are represented by directed line segments with the same initial point, then they determine
a parallelogram with base |a , altitude | b | sin 6, and area

A=|a|(|b|sin ) =|a X b]

Thus, we have the following way of interpreting the magnitude of a cross product.

The length of the cross product a X b is equal to the area of the parallelogram
determined by a and b.

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points
P(1,4,6), 0(—2,5, —1), and R(1, —1, 1).

SOLUTION The vector P_Q) X P_>R is perpendicular to both P_Q) and P_)R and is therefore per-
pendicular to the plane through P, Q, and R. We know from (12.2.1) that

PO=(—2—-1i+G-4j+(-1—-6k=-3i+j— Tk
PR=(1-1)i+ (-1 -4)j+(1-6k=—-5j— 5k

We compute the cross product of these vectors:

i j kK
—> —>
POXPR=|-3 1 -7

0 -5 -5

=(=5-35i—(15-0)j+ (15— 0k = —40i — 15j + 15k

So the vector {(—40, —15, 15) is perpendicular to the given plane. Any nonzero scalar
multiple of this vector, such as (—8, —3, 3), is also perpendicular to the plane. G

EXAMPLE 4 Find the area of the triangle with vertices P(1, 4, 6), Q(—2, 5, —1),
and R(1, —1, 1).

SOLUTION In Example 3 we computed that P—Q> X 152) = (—40, —15, 15). The area of the
parallelogram with adjacent sides PQ and PR is the length of this cross product:

|PG x PR| = (=40F + (—157 + 15? = 5,/82

The area A of the triangle PQOR is half the area of this parallelogram, that is, 2\/@ PPy
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If we apply Theorems 5 and 6 to the standard basis vectors i, j, and k using ¢ < /2

we obtain
ixXj=k jxXk=i kXi=j
jXi=-k k Xj=—i iXk=—j
Observe that
in;éin

Thus, the cross product is not commutative. Also
iX{iXj)=ixXxk=—j

whereas
iXXj=0xj=0

So the associative law for multiplication does not usually hold; that is, in general,
(axXb)Xe#aX(Xe)

However, some of the usual laws of algebra do hold for cross products. The following the-
orem summarizes the properties of vector products.

8] Theorem If a, b, and ¢ are vectors and c is a scalar, then
l.LaXb=-bXa

2. (ca) X b=c(a X b)=aX(cb)
3.aX(b+c)=aXb+aXe

4, (a+b)Xé==aXc+ch
5a-(bXc¢)=(@Xb)-¢
6.axX(bXc¢c)=(a-c)b—(a-b)c

These properties can be proved by writing the vectors in terms of their components ;
and using the definition of a cross product. We give the proof of Property 5 and leave the :
remaining proofs as exercises.

Proof of Property 5 If a = (a,, az, a3}, b = (b, b2, b3}, and ¢ = {c\, ¢z, ¢3), then
a- (b X C) = al(b2c3 - b;Cz) + az(b3C1 - b]C;) + a;(b,cz — sz[)
= a1b2c3 — a\bzey + azb3C1 - azb1C3 + asbicy — asbac,
= (a2by — asby)ci + (asby — aibs)c: + (abz — azbi)cs
=(@Xb)-c

The product a - (b X ¢) that occurs in Property 5 is called the scalar triple producto
the vectors a, b, and ¢. Notice from Equation 9 that we can write the scalar triple product 3
as a determinant:

a, 4a aj
a-(ch)= b, b, b;

i € €3




X€

hild

jURE 3

GURE 4

SECTION 12.4 THE CROSS PRODUCT Iff 819

The geometric significance of the scalar triple product can be seen by considering the
parallelepiped determined by the vectors a, b, and ¢ (Figure 3). The area of the base
parallelogram is A = |b X c|. If 6 is the angle between a and b X ¢, then the height h
of the parallelepiped is & = |a||cos |- (We must use |cos 8] instead of cos 6 in case
0 > m/2.) Therefore, the volume of the parallelepiped is

V=Ah = |b X c||a||cos 8] =|a- (b X ¢)]

Thus, we have proved the following formula.

1Y The volume of the parallelepiped determined by the vectors a, b, and ¢ is the
magnitude of their scalar triple product:

V=|a-(bXc)

If we use the formula in (11) and discover that the volume of the parallelepiped
determined by a, b, and ¢ is 0, then the vectors must lie in the same plane; that is, they are
coplanar.

EXAMPLE 5 Use the scalar triple product to show that the vectors a = (1,4, —7),
= (2, —1,4),and ¢ = (0, —9, 18) are coplanar.

SOLUTION We use Equation 10 to compute their scalar triple product:

L 4 -7
a-bXeg=[2 -1 4
0 -9 18

N O E A T

-9 18 0 18 0 -9

1(18) — 4(36) — 7(—18) = 0

Therefore, by (11) the volume of the parallelepiped determined by a, b, and ¢ is 0. Thi
means that a, b, and ¢ are coplanar. e

The idea of a cross product occurs often in physics. In particular, we consider a force F
acting on a rigid body at a point given by a position vector r. (For instance, if we tighten
a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.) The
torque 7 (relative to the origin) is defined to be the cross product of the position and force
vectors

T=rXF
and measures the tendency of the body to rotate about the origin. The direction of the

torque vector indicates the axis of rotation. According to Theorem 6, the magnitude of the
torque vector is

|| =|r X F| =|r||F|sin 6

where 6 is the angle between the position and force vectors. Observe that the only com-
ponent of F that can cause a rotation is the one perpendicular to r, that is, | F|sin 6. The
magnitude of the torque is equal to the area of the paralleiogram determined by r and F.

&




820 |Il CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as showny i B 96. P(2, 1
Figure 5. Find the magnitude of the torque about the center of the bolt. - 1. PO, -
SOLUTION The magnitude of the torque vector is % P2, C
|7 = |r X F| = |r||F|sin 75° = (0.25)(40) sin 75° ©
= 105in 75° = 9.66 N-m = 9.66 J 1-30 W
yectors a,
If the bolt is right-threaded, then the torque vector itself is 9. 2=«
FIGURE 5 7=|7|n=9.66n 30.a =1
where n is a unit vector directed down into the page. M' %2
31-32
PO, PR,
3. P2,
; 32. P(0,
Il 12.4 Exercises % K
T
- . - . . 33. Use 1t
1~7 i Find the cross product a X b and verify that it is orthogonal (b) Use the right-hand rule to decide whether the components a=
to both a and b. of a X b are positive, negative, or 0. are ¢
l.a=(1,2,0), b=¢(0,3,1) z . Use -
2. a=¢(514), =(-1,0,2) P(1,
plan
a=2i+j—k b=j+2k .
35. A bi
da=i—-j+k b=i+j+k show
5.a=3i+2j+4k, b=i-2j-3k mag.
6.a=it+tejte'k, b=2i+tej—e’k
3 = (L2, d b=(0,1,3),finda X db X a.
a= (1205, b= (125305 13. ifa=(1,2,1) and b= (0, 1,3),finda X bandb X a
. . i . i ) . . . . ) 4. Ifa=(3,1,2), b={(—1,1,0),and ¢ = (0,0, —4), show
thata X (b X ¢) # (a X b) X c.
8. Ifa=i—2kandb=j+k, finda X b. Sketch a, b, and 15% Find two unit vectors orthogonal to both {1, ~1, 1) and
a X b as vectors starting at the origin. (0,4, 4). .
State whether each expression is meaningful. If not, explain 16. Find two unit vectors orthogonal to both i + j + k and 2i + k. 36. Finc
why. If so, state whether it is a vector or a scalar. o . appl
@a-(bXec) (b) a X (b-c) 17. Show that 0 X a = 0 = a X 0 for any vector a in V5.
© aX(bXc) (d (a-b) Xe¢ 18. Show that (a X b) - b = 0 for all vectors a and b in V5.
© (@-b) X (c-d) 6 @xb)-lexd 19. Prove Property 1 of Theorem 8.
10-11 i Find |u X v| and determine whether u X v is directed 20. Prove Property 2 of Theorem 8.
into th t of th .
fnto te page or out of te page 21. Prove Property 3 of Theorem 8.
10. 11.
lul=6 22. Prove Property 4 of Theorem 8.
B 23. Find the area of the parallelogram with vertices 4(—2, 1),
lul= 60° lv|=10 B(0, 4), C(4, 2), and D(2, —1).
24, Find the area of the parallelogram with vertices K(1, 2, 3), I Aw
. . . . . . . . . . . . L(1,3,6), M(3,8,6), and N(3,7, 3). bolt
at tl
J2; The figure shows a vector a in the xy-plane and a vector b in 2572? IT @ Flcr;(;ea ve(;:tg)r (;irttcllotional o t?: Planf t;m;gh the ) . nee
the direction of k. Their lengths are |a| = 3 and |b| = 2. points £, 0, and R, and (b) find the area of triangle POR. B. Let

(a) Find |a X b]|. 25 P(1,0,0), 0(0,2,0), R(0,0,3) the




g P2 1,5), O(—1,3,4), RG,0,6)

27. P(O, -2, 0), Q(47 11 —2)1 R(5: 3, 1)
28. P(za 07 _3)7 Q(3s L 0)7 R(Sv 21 2)

B o o ° o a a o o o

99-30 11 Find the volume of the parallelepiped determined by the
yectors a, b, and ¢.

9.a=(63—1), b=(0,1,2), c¢=(4,-2,5)
a=i+j-k b=i-j+k c=-i+j+Kk

N a a o o o a a o o o a

31-32 m Find the volume of the parallelepiped with adjacent edges
PQ. PR, and PS.

3. P(2,0,—1), Q4,1,0), R(3,-1,1), S2,-2,2)
32. P(0,1,2), Q(2,4,5), R(—1,0,1), S(6, —1,4)

33. Use the scalar triple product to verify that the vectors
a=2i+3j+tkb=i—jande=7i+3j+ 2k
are coplanar.

34. Use the scalar triple product to determine whether the points
P(1,0,1), 0(2,4,6), R(3, —1, 2), and S(6, 2, 8) lie in the same
plane.

35. A bicycle pedal is pushed by a foot with a 60-N force as

shown. The shaft of the pedal is 18 cm long. Find the
magnitude of the torque about P.

36. Find the magnitude of the torque about P if a 36-1b force is
applied as shown.

3. A wrench 30 cm long lies along the positive y-axis and grips a
bolt at the origin. A force is applied in the direction (0, 3, —4)
at the end of the wrench. Find the magnitude of the force
needed to supply 100 J of torque to the bolt.

B Letv=5 j and let u be a vector with length 3 that starts at
the origin and rotates in the xy-plane. Find the maximum and
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minimum values of the length of the vector u X v. In what
direction does u X v point?

points Q and R. Show that the distance d from the point P
to the line L is
_ |axb]

d
|a|

—> —>
where a = QR and b = QP.
(b) Use the formula in part (a) to find the distance from
the point P(1, 1, 1) to the line through Q(O, 6, 8) and
R(—1,4,7).
40. (a) Let P be a point not on the plane that passes through the
points @, R, and S. Show that the distance d from P to the

plane is
4= [(a X b)-c|
|aXb]

—> —> —>
where a = QR, b = QS, and ¢ = QP.
(b) Use the formula in part (a) to find the distance from the
point P(2, 1, 4) to the plane through the points Q(1, 0, 0),
R(0, 2, 0), and S(0, 0, 3).

A2 Prove that (a — b) X (a + b) = 2(a X b).
42. Prove part 6 of Theorem 8, that is,
aX(bXe¢)=(-c)b—-(a-be -
43. Use Exercise 42 to prove that
aX(bbXc)+bX(ecxXa)+teX(@axXb)y=90

44. Prove that
a-c b-c

(@aXb)-(cxXd = a-d b-d

#55 Suppose that a # 0.
(a) Ifa-b = a - ¢, does it follow that b = ¢?
(b) Ifa X b =a X ¢, does it follow that b = ¢?
(c)Ifa-b=a-canda X b =a X ¢, does it follow
that b = ¢?

46. If v,, v,, and v; are noncoplanar vectors, let

v, X V3
ki=—""— k=
Vl‘(VZXV3)

V3 X vy
vi - (v2 X v3)

vy X va

k:—
? Vi (v X v3)

(These vectors occur in the study of crystallography. Vectors of
the form n, v, + n,v2 + n;3v;, where each #; is an integer, form
a lattice for a crystal. Vectors written similarly in terms of k,
k,, and k; form the reciprocal lattice.)
(a) Show that k; is perpendicular to v; if i 7 j.
(b) Show thatk; - v,=1fori=1,2,3.

1

< (ks X =—.
(c) Show that ki - (ks X ko) = ==
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'UH DISCOVERY PROJECT

etrahedron isa sohd wrth four vemces P Q, R and S, and four'mangularfaces as shown i

.and v4 be vectors wrth lengths equal to the area -of -t ‘s':opr_Site the

' omtmg outward Show that ,
: .' V1+V2+V3_+V4

that meet i
-OF otherww.h

“(This is.a three-dimensional version

of the Pythagoreari Thétj_répj;) "“‘, E

12.5 Equations of Lines and Planes
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—

A line in the xy-plane is determined when a point on the line and the direction of the
(its slope or angle of inclination) are given. The equation of the line can then be wiits
using the point-slope form.

Likewise, a line L in three-dimensional space is determined when we know a |
Polx0, Yo, o) on L and the direction of L. In three dimensions the direction of a line i.s (o
veniently described by a vector, so we let v be a vector parallel to L. Let P(x, y, z
arbitrary point OP_L> and let et rp and r be the position vectors of P, and f;()that is, they lm
representations OP, and OP ). If a is the vector with representation PP, as in Figure
then the Triangle Law for vector addition gives r = ry + a. But, since a and v are pari
FIGURE 1 vectors, there is a scalar ¢ such that a = ¢v. Thus '

r=ry+1tv ‘!

which is a vector equation of L. Each value of the parameter ¢ gives the position ve
r of a point on L. In other words, as ¢ varies, the line is traced out by the tip of the ve
tor r. As Figure 2 indicates, positive values of ¢t correspond to points on L that lie on =
side of Py, whereas negative values of ¢ correspond to points that lie on the other side ot

If the vector v that gives the direction of the line L is written in component form i
v = {(a,b,c), then we have tv = (ta, th, tc). We can also write r = (x,y,z) a
ro = (X0, Yo, Zo), 0 the vector equation (1) becomes

Po(x. Yo, Zo)

FIGURE 2 : (x,y,2) = (x0 + ta,yo + th, zo + tc)
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Two vectors are equal if and only if corresponding components are equal. Therefore, we
have the three scalar equations:

L x=x+ at y =1y + bt z=12z9+ ct

where ¢ € R. These equations are called parametric equations of the line L through the
point Py(xo, yo, zo) and parallel to the vector v = {a, b, ¢). Each value of the parameter ¢

gives a point (x, y, z) on L.

EXAMPLE 1
(a) Find a vector equation and parametric equations for the line that passes through the

point (5, 1, 3) and is parallel to the vectori + 4j — 2k.
(b) Find two other points on the line.

SOLUTION
(a) Herero = (5,1,3) = 5i + j + 3kand v=1i + 4j — 2Kk, so the vector equa-
tion (1) becomes

r=(5i+j+ 3k +i+4j— 2k

or r=0G8+ni+1+49j+ 3 -2k

Parametric equations are

x=5+1¢ y=1+ 4t z=3—12t

(b) Choosing the parameter value t = 1 gives x = 6,y = 5,and z = 1, s0 (6,5, 1) isa
point on the line. Similarly, r = —1 gives the point (4, —3, 5). Fey

The vector equation and parametric equations of a line are not unique. If we change the
point or the parameter or choose a different parallel vector, then the equations change. For
instance, if, instead of (5, 1, 3), we choose the point (6, 5, 1) in Example 1, then the para-
metric equations of the line become

x=6+1t y=>5+ 4t z=1-—-12t

Or, if we stay with the point (5, 1, 3) but choose the parallel vector 2i + 8j — 4k, we
arrive at the equations

x=5+12 y=1+ 8t z=3—4¢

In general, if a vector v = {a, b, ¢) is used to describe the direction of a line L, then
the numbers a, b, and ¢ are called direction numbers of L. Since any vector parallel to v
could also be used, we see that any three numbers proportional to a, b, and ¢ could also be

used as a set of direction numbers for L.
Another way of describing a line L is to eliminate the parameter ¢ from Equations 2. If

none of a, b, or ¢ is 0, we can solve each of these equations for ¢, equate the results, and
obtain

x——xo__y—yo Z— 2y
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Il Figure 4 shows the line L in Example 2 and
the point P where it intersects the xy-piane.

" FIGURE 4

These equations are called symmetric equations of L. Notice that the numbers a, b, sall
¢ that appear in the denominators of Equations 3 are direction numbers of L, that is, com:
ponents of a vector parallel to L. If one of a, b, or ¢ is 0, we can still eliminate ¢. Fig
instance, if @ = 0, we could write the equations of L as

y bl yo zZ = Zy

X = Xo =
b c

This means that L lies in the vertical plane x = x,,.

EXAMPLE 2
(a) Find parametric equations and symmetric equations of the line that passes through

the points A(2, 4, —3) and B(3, —1, 1).
(b) At what point does this line intersect the xy-plane?

SOLUTION
(a) We are not explic_i;ly given a vector parallel to the line, but observe that the vector

with representation AB is parallel to the line and
v=(3—-2,—-1—-4,1-(=3)) =(1,-5,4)

Thus, direction numbers are a = 1, b = —35, and ¢ = 4. Taking the point (2, 4, —3) as
Py, we see that parametric equations (2) are _

e

x=2+t y=4-15t z=-3+ 4

and symmetric equations (3) are

x-2 y—4 z+3

| =5 4

(b) The line intersects the xy-plane when z = 0, so we put z = 0 in the symmetric ¢qu
tions and obtain

x—2_y—4_§_
1 -5 4

This gives x = & and y = 3, so the line intersects the xy-plane at the point (%, 50). ol

In general, the procedure of Example 2 shows that direction numbers of the line i
through the points Po(xo, Yo, 2o) and Pi(xi, y1, z1) are x; — Xo, 1 — Yo, and z; — zo and
symmetric equations of L are

X — Xo Y " Y __Z7 2
X1 — Xo Y1~ Yo Z1 — 2¢

Often, we need a description, not of an entire line, but of just a line segment. How, f#
instance, could we describe the line segment AB in Exarnple 27 If we put ¢ = 0 in the pw
metric equations in Example 2(a), we get the point (2, 4, —3) and if we put £ = 1 we ¢
(3, —1, 1). So the line segment AB is described by the parametric equations :

x=2+t y=4—>5¢ z= -3+ 4¢ O0=sr=1

or by the corresponding vector equation

r(t) = (2+t,4 — 5t =3 + 41) 0=sr=<1




Fo(x0, Yo. Zo)
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In general, we know from Equation 1 that the vector equation of a line through the (tip
of the) vector ry in the direction of a vector visr = ro + ¢v. If the line also passes through
(the tip of)) r;, then we can take v = r; — rp and so its vector equation is

r=r;+tlr,—ro) =00 —Hro +tr,

The line segment from ry to r, is given by the parameter interval 0 < ¢ < 1,

@] The line segment from ro to I is given by the vector equation

r(t) = (1 — )re + 0=sr=<1

EXAMPLE 3 Show that the lines L; and L, with parametric equations

=1+ y=—2+73t z=4—1

x=2s y=3+s z= -3+ 4s

are skew lines; that is, they do not intersect and are not parallel (and therefore do not lie
in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors (1,3, —1) and
(2,1, 4) are not parallel. (Their components are not proportional.) If L, and L, had a
point of intersection, there would be values of ¢ and s such that

1+ t=2s
—2+3tr=3+¢s
4— t=-3+4s

But if we solve the first two equations, we get t = ¥ and s = £, and these values don’t
satisfy the third equation. Therefore, there are no values of ¢ and s that satisfy the three
equations. Thus, L, and L, do not intersect. Hence, L, and L, are skew lines. i

||| _Pranes

Although a line in space is determined by a point and a direction, a plane in space is more
difficult to describe. A single vector parallel to a plane is not enough to convey the “direc-
tion” of the plane, but a vector perpendicular to the plane does completely specify its direc-
tion. Thus, a plane in space is determined by a point Py(x, yo, zo) in the plane and a
vector n that is orthogonal to the plane. This orthogonal vector n is called a normal
vector. Let P(x, y, z) be an arbitrary point in the plane, and d let ro and r be the position
vectors of Pg and P. Then the vector r — ry is represented by PoP. (See Figure 6.) The nor-
ma] vector n is orthogonal to every vector in the given plane. In particular, n is orthogonal
tor — ro and so we have

|

n-r—r)=20

which can be rewritten as

n*r=mn-rp

|

Either Equation 5 or Equation 6 is called a vector equation of the plane.
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FIGURE 7

[l Figure 8 shows the portion of the plane in
Example 5 that is enclosed by triangle POR.

R(5,2,0)
FIGURE 8

To obtain a scalar equation for the plane, we write n = (a, b, ¢}, r = (x, y, z).
ro = {Xo, Yo, z0). Then the vector equation (5) becomes

{a,b,c) * {x — X0,y — Yo, 2 — 20) =0

L a(x — x0) + b(y —yo) + c{z —20) =0 j

Equation 7 is the scalar equation of the plane through Py(xo, yo, z0) with normal vectes
n={ab,c).

or

EXAMPLE 4 Find an equation of the plane through the point (2,4, —1) with normal ves
n = (2, 3,4). Find the intercepts and sketch the plane.

SOLUTION Puttinga = 2, b = 3,¢c =4, xo0 = 2, yo = 4, and z, = —1 in Equation 7, w¢
see that an equation of the plane is

2 -2 +3(y—-4+4z+1)=0
or 2x + 3y +4z =12

To find the x-intercept we set y = z = 0 in this equation and obtain x = 6. Similarly, 1
y-intercept is 4 and the z-intercept is 3. This enables us to sketch the portion of the plu%?
that lies in the first octant (see Figure 7). i

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equatisg
of a plane as

L ax+by+cz+d=0 j

whered = —(ax, + byo + cz). Equation 8 is called a linear equation in x, y, and z. ('«
versely, it can be shown that if a, b, and ¢ are not all 0, then the linear equation (8) rejus:
sents a plane with normal vector {a, b, c}. (See Exercise 73.)

EXAMPLE 5 Find an equation of the plane that passes through the points P(1, 3, 2),
0@, —1,6), and R(5, 2, 0).

SOLUTION The vectors a and b corresponding to P@) and PR are
a=(2,—~4,4) b=(4,-1-2)

Since both a and b lie in the plane, their cross product a X b is orthogonal to the plans
and can be taken as the normal vector. Thus

i j k
n=axb=|2 —4 4|=12i+20j+ 14k
4 -1 -2

With the point P(1, 3, 2) and the normal vector n, an equation of the plane is
126 — 1) +20(y = 3) + 14z —2) =0
or 6x + 10y + 7z = 50
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EXAMPLE 6 Find the point at which the line with parametric equations x = 2 + 3¢,
y = —4t,z =5 + t intersects the plane 4x + 5y — 2z = 18.

SOLUTION We substitute the expressions for x, y, and z from the parametric equations into
the equation of the plane:

42 + 36) + 5(—4) —2(5+1) =18

This simplifies to —10¢ = 20, so ¢ = —2. Therefore, the point of intersection occurs
il when the parameter value is t = —2. Then x = 2 + 3(—2) = —4,y = —4(-2) = 8,
z =5 — 2 = 3 and so the point of intersection is (—4, 8, 3). i

Two planes are parallel if their normal vectors are parallel. For instance, the planes
x+ 2y —3z=4 and 2x + 4y — 6z = 3 are parallel because their normal vectors are
n; = (1,2, —3) and n, = (2,4, —6) and n, = 2n,. If two planes are not parallel, then
they intersect in a straight line and the angle between the two planes is defined as the acute
angle between their normal vectors (see angle 6 in Figure 9).

EXAMPLE 7
ure 10 shows the planes in Example 7and ~ (a) Find the angle between the planes x + y + z=1land x — 2y + 3z = 1.
e of intersection L. (b) Find symmetric equations for the line of intersection L of these two planes.
arly; SOLUTION

1 {5 (a) The normal vectors of these planes are

n = {1,1,1) n, = (1, —2,3)
and so, if @ is the angle between the planes, Corollary 12.3.6 gives

non, I+ 12 +13) 2
|m||n,] VI+1+1/1+4+9 42

2
6= COS_1<E) ~ 72°

(b) We first need to find a point on L. For instance, we can find the point where the line
intersects the xy-plane by setting z = 0 in the equations of both planes. This gives the
equations x + y = 1 and x — 2y = 1, whose solution is x = 1, y = 0. So the point
(1,0, 0) lies on L.

Now we observe that, since L lies in both planes, it is perpendicular to both of the
normal vectors. Thus, a vector v parallel to L is given by the cross product

cos @ =

nother way to find the line of intersection is i ik

ive the equations of the planes for two of _ _ s .
ariables in terms of the third, which can be v=m Xn,=|1 1 1|=5i-2j—-3k
as the parameter. 1 =2 3

and so the symmetric equations of L can be written as

5 -2 -3 i

NOTE o Since a linear equation in x, y, and z represents a plane and two nonparallel
planes intersect in a line, it follows that two linear equations can represent a line. The
points (x, y, z) that satisfy both a;x + by + ¢1z + di = Oand asx + by + ¢c2z +dy =0
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L lie on both of these planes, and so the pair of linear equations represents the line of 1
section of the planes (if they are not parallel). For instance, in Example 7 the linc / «4
given as the line of intersection of the planes x + y + z=1and x — 2y + 3z = | I%

symmetric equations that we found for L could be written as

- Y _Z
5 T2 ™M 5T

-2 which is again a pair of linear equations. They exhibit L as the line of intersection of s
1 o 1 % planes (x — 1)/5 = y/(—2) and y/(—2) = z/(—3). (See Figure 11.)
In general, when we write the equations of a line in the symmetric form
FIGURE 11
NIl Figure 11 shows how the line L in Example 7

can also be regarded as the line of intersection
of planes derived from its symmetric equations.

x_X()_y_y()_Z_Zo

a b c

we can regard the line as the line of intersection of the two planes

X=X Y= Yo Y—Y _zZ— 2
= and =
a b b c

EXAMPLE 8 Find a formula for the distance D from a point Py(x1, y1, z1) to the plane
ax+by+czt+d=0.

SOLUTION Let Po(xo, yo, z0) be any point in the given plane and let b be the vector corte
—>
sponding to Py P,. Then
b = (xy — X0, 1 — Y0, 21 — Zo)
From Figure 12 you can see that the distance D from P to the plane is equal to the

absolute value of the scalar projection of b onto the normal vector n = {a, b, ¢). (See
Section 12.3.) Thus

: _ _ [n-b]
i‘ D =|comp,b| ]
‘ _ lata = x0) + by — yo) + clz1 — 2|
Va? +b? + ¢?
FIGURE 12
_ [(ax, + by, + cz1) — (axo + byo + czo) |
Va? + b2 + ¢?

Since Py lies in the plane, its coordinates satisfy the equation of the plane and so we
have axo + bys + czo + d = 0. Thus, the formula for D can be written as

D= |ax, + by, + ¢z + d|
Va? + b2+ ¢?

&

EXAMPLE 9 Find the distance between the parallel planes 10x + 2y — 2z = 5 and
S5x+y—z=1.

SOLUTION First we note that the planes are parallel because their normal vectors
(10,2, —2) and (5, 1, —1) are parallel. To find the distance D between the planes,
we choose any point on one plane and calculate its distance to the other plane. In pa
ticular, if we put y = z = 0 in the equation of the first plane, we get 10x = 5 and so
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(é, 0, 0) is a point in this plane. By Formula 9, the distance between (%, 0, O) and the
plane5x + y—z—1=20is

p S+ -10 1] 3 _+3
V52 12+ (-1 33 6
So the distance between the planes is /3/6. s

EXAMPLE 10 In Example 3 we showed that the lines
L: x=1+1¢ y=—-2+3t z=4-1¢
Ly x=2s y=3+s z= -3+ 4s

are skew. Find the distance between them.

SOLUTION Since the two lines L; and L; are skew, they can be viewed as lying on two
parallel planes P, and P,. The distance between L, and L, is the same as the distance
between P; and P,, which can be computed as in Example 9. The common normal
vector to both planes must be orthogonal to both v; = (1, 3, —1) (the direction of L;)
and v, = (2, 1, 4) (the direction of L,). So a normal vector is

ij k
n=vi Xv,=|13 —-1|=13i-6j— 5k
2 1 4

If we put s = 0 in the equations of L,, we get the point (0, 3, —3) on L, and so an equa-
tion for P, is '

13x —0) —6(y—3)—5(z+3)=0 or 13x -6y —52+3=0

If we now set ¢ = 0 in the equations for L;, we get the point (1, ~2, 4) on P;. So
the distance between L, and L, is the same as the distance from (1, —2, 4) to
13x — 6y — 5z + 3 = 0. By Formula 9, this distance is

]13(1) —6(—2) —5(4) + 3] 8
D= = == (.53
ST+ + (57 V230 -~

[ 12.5 Exercises

1
1. Determine whether each statement is true or false. 2-5 m Find a vector equation and parametric equations for

(a) Two lines parallel to a third line are parallel. the line.

(b) Two lines perpendicular to.a third line are parallel. 2. The line through the point (1, 0, —3) and parallel to the

(c) Two planes parallel to a third plane are parallel. ' vector 2i — 4j + 5k

(d) Two planes perpendicular to a third plane are parallel.
(¢) Two lines parallel to a plane are parallel.
(f) Two lines perpendicular to a plane are parallel.

3. The line through the point (—2, 4, 10) and parallel to the
vector (3, 1, —8)

(g) Two planes parallel to a line are parallel. 4. The line through the origin and parallel to the line x = 2z,
(h) Two planes perpendicular to a line are parallel. y=1-tz=4+3t

(i) Two planes either intersect or are parallel. 285 The line through the point (1, 0, 6) and perpendicular to the
(j) Two lines either intersect or are parallel. planex + 3y + z =35

(k) A plane and a line either intersect or are parallel. o o o o o o a o o °
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6-12 m Find parametric equations and symmetric equations for the
line.

6. The line through the origin and the point (1, 2, 3)

7. The line through the points (1, 3, 2) and (—4, 3, 0)
8. The line through the points (6, 1, —3) and (2, 4, 5)
The line through the points (O, 1 1) and (2,1, —3)

10. The line through (2, 1, 0) and perpendicular to both i + j
and j + k

11. The line through (1, ~1, 1) and parallel to the line
x+ 2= %y =z-—3

12

The line of intersection of the planes x + y + z = 1
andx+z=0

o a a [} o a Bl a o L} o o

8 Is the line through (—4, —6, 1) and (—2, 0 —3) parallel to the
line through (10, 18, 4) and (5, 3, 14)?

14. Is the line through (4, 1, —1) and (2, 3, 3) perpendicular to the
line through (—3,2, 0) and (5, 1,4)?

15. (a) Find symmetric equations for the line that passes through
the point (0, 2, —1) and is parallel to the line with para-
metric equations x = 1 + 22, y =34,z =5 — 7¢.

(b) Find the points in which the required line in part (a) inter-
sects the coordinate planes.

16. (a) Find parametric equations for the line through (5, 1, 0) that
is perpendicular to the plane 2x — y + z = 1.
(b) In what points does this line intersect the coordinate
planes?

17. Find a vector equation for the line segment from (2, —1, 4)
to (4,6, 1).

18, Find parametric equations for the line segment from (10, 3, 1}
to (5, 6, —3).
19-22 i Determine whether the lines L, and L; are parallel, skew,
or intersecting. If they intersect, find the point of intersection.
M L x=—61, y=1+9:, z=-3;
Lyx=1+2s, y=4-35, z=35
20. L: x=1+2¢t, y=3t, z=2—1
Ly x=—-1+s, y=4+s z=1+3s

- T x y—1 z-2 x—3 y—-2 z-—1
ML s=2""= , Lz = =
b Lii 2 R -3 2
x—1 y—=3 z—-2
2 Ly = —
x=2 y—6 z+2
L = =
S -1 3

23-38 mt Find an equation of the plane.

23. The plane through the point (6, 3, 2) and perpendicular
vector {—2, 1, 5) 3

24. The plane through the point (4, 0, —3) and with normal
vector j + 2k

25. The plane through the point (1, —1, 1) and with normal vs¢
i+j—-k

26. The plane through the point (—2, 8, 10) and perpendiculag
thelinex =1+t y=2,z=4 — 3¢

27. The plane through the origin and parallel to the plane
2x =y +3z2=1 »

28. The plane through the point (—1, 6, —5) and parallel to the .
planex +y+z+2=0

29. The plane through the point (4, —2, 3) and parallel to the pls
3x—7z=12

30. The plane that contains the linex =3 + 2z, y=¢,2=8 »
and is parallel to the plane 2x + 4y + 8z = 17

The plane through the points (0, 1, 1), (1,0, 1), and (1, 1, 0}
32. The plane through the origin and the points (2, —4, 6)
and (5, 1, 3)
33. The plane through the points (3, -1, 2), (8, 2, 4), and
(-1,-2,-3)
34, The plane that passes through the point (1, 2, 3) and contains
thelinex=3t,y=1+t2z=2~—1

35, The plane that passes through the point (6, 0, —2) and contauss
thelinex =4 —2t,y=3+5t,z=7 + 4¢

36. The plane that passes through the point (1, —1, 1) and
contains the line with symmetric equations x = 2y = 37

37. The plane that passes through the point (—1, 2, 1) and contium
the line of intersection of the planes x + y — z = 2 and
2x—y+3z=1

38. The plane that passes through the line of intersection of the
planes x — z = l and y + 2z = 3 and is perpendicular to the
planex +y — 2z=1

39-41 i Find the point at which the line intersects the given pluss

¥ x=3—-t,y=2+¢t,z=5t; x—y+22=9

40, x=1+2: y=41,z=2-3t; x+2y~z+1=0

N x=y—1=2z; dx—y+3z=238

42, Where does the line through (1, 0, 1) and (4, —2, 2) interscct
the plane x + y + z = 6?
43. Find direction numbers for the line of intersection of the plune
x+yt+tz=landx+z=0.

44. Find the cosine of the angle between the planes x + y + z ¢
and x + 2y + 3z=1.



il Determine whether the planes are parallel, perpendicular,
er. If neither, find the angle between them.

4y —3z=1, -3x+6y+7z=0
=4y —x, 3x— 12y +6z2=1
Ay+z=1 x—-y+tz=1
—3y+4z=5 x+6y+4z=3
4y — 2z, 8y=1+2x+ 4z
i 2y +2:=1, 2x—y+2z=1

il (aj Find symmetric equations for the line of intersection
' planes and (b) find the angle between the planes.

(ty—2z=2, 3x—4y+52=6
-2y+z=1, 2x+y+z=1

o a o o o o o a o o

i Find parametric equations for the line of intersection of

«x+y 2x—5y—-z=1
v+52+3=0, x—3y+z+2=0

o o a a a a o a a o

nd an equation for the plane consisting of all points that are
uidistant from the points (1, 1, 0) and (0, 1, 1).

nd an equation for the plane consisting of all points that are
juidistant from the points (—4, 2, 1) and (2, —4, 3).

nd an equation of the plane with x-intercept a, y-intercept b,
wul z-intercept c.

>

44) Find the point at which the given lines intersect:
r=<(1,1,0) +(1,-1,2)

and r=14(2,0,2) +s(—1,1,0)

tb) Find an equation of the plane that contains these lines.

Find parametric equations for the line through the point
#), 1, 2) that is parallel to the plane x + y + z = 2 and
perpendiculartothe linex =1+ ¢, y=1—t,z =2¢.
tind parametric equations for the line through the point
i), 1, 2) that is perpendicular to the line x = 1 + ¢,

=1 — t, z = 2t and intersects this line.

Which of the following four planes are parallel? Are any of

them identical?
Pidx —2y+6z=3 Py d4x—2y—2z=6

Py —6x+3y—9z2=5 Puz=2x—y—-3
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62. Which of the following four lines are parallel? Are any of them
identical?
L:x=1+1t y=t z=2-15t

Lyx+t1l=y—-2=1-2
Ly: x=1+¢t y=4+1¢t z=1—-1t
Ler=(2,1,-3) + (2,2, —10)
63-64 1 Use the formula in Exercise 39 in Section 12.4 to find the
distance from the point to the given line.
63. (1,2,3); x=2+1t y=2-3t z=5t
64. (1,0,-1); x=5—-1t, y=3t z=1+2¢
65~-66 1 Find the distance from the point to the given plane.
65. (2,8, 9), x—=2y—2z=1
66. 3,-2,7), 4x—6y+z=25
67-68 i Find the distance between the given parallel planes.
67. z=x+2y+1, 3x+6y—3z=4
68.3x +6y —9z=4, x+2y—3z=1

o Ll o o a o o o o a a o

6% Show that the distance between the parallel planes
ax+by+cz+d =0andax + by +cz+d,=0is

|y — o]

Jat+ b+ ¢?

70. Find equations of the planes that are parallel to the plane
x + 2y — 2z = 1 and two units away from it.

71. Show that the lines with symmetric equations x = y = z and
x + 1 =y/2 = z/3 are skew, and find the distance between
these lines.

72. Find the distance between the skew lines with parametric
equationsx =1+ t,y=1+61,z=2t,andx =1 + 25,
y=5+15s,z= —2 + 6s.

73. If a, b, and c are not all 0, show that the equation
ax + by + ¢z + d = 0 represents a plane and {(a, b, c¢) is a
normal vector-to the plane.
Hint: Suppose a # 0 and rewrite the equation in the form

a<x+%)+b(y—0)+c(z—0)='0

74. Give a geometric description of each family of planes.
@x+y+z=c
byx+y+tecz=1

(c) ycos6 + zsinf =1






