Direction Fields -dfield6

• The routine dfield6 is already loaded on all PUCC machines as standard software. To access it from any PUCC machine:

Start—All Programs—Standard Software—Computational Packages—MATLAB6.1—MATLAB6.1

If you are using your own copy of MATLAB you may need to download dfield6. Here is a link:

$$http://math.rice.edu/{\sim}dfield/$$

(Note: dfield and dfield5 are older versions of dfield6.)

- To access dfield6, at a MATLAB prompt type: dfield6
- A popup window will appear:

The differential equation.				
x '= x^2-t				oldered obstate the
The independent variable is t				
Parameters/expressions: =			=	
The display window.				
The minimum value of t	-2	The minimum value of x = -4		
The maximum value of t = 10		The maximum value of x = 4		4
Quit	Reveit		Proceed	

- Correctly enter your differential equation and enter the range of values of the independent and dependent variables. Hit **Proceed** and a graphics window will appear with the direction field of your differential equation. Click the mouse at any point and the corresponding solution curve through that point will be plotted.
- There are several options available in the graphics display window: printing, keyboard input of initial conditions, inserting text, erasing solutions, zoom, etc.
- You may have up to two parameters to quickly vary your differential equation (rather than retyping the whole differential equation with a different constant). For example, if you wanted to see the slope fields for $y' = At + By^2$ for the values A = 0, 1, 2 and B = -0.1, 0.0, 0.1, you only need to type in one equation and simply vary the parameters A and B in the indicated boxes.