Supplementary Problems

- For what value(s), if any, of A will $y = Axe^{-x}$ be a solution of the differential equation $2y' + 2y = e^{-x}$? For what value(s), if any, of B will $y = Be^{-x}$ be a solution?
- B Using the substitution u(x) = y + x, solve the differential equation $\frac{dy}{dx} = (y + x)^2$.
- Using the substitution $u(x) = y^3$, solve the differential equation $y^2 \frac{dy}{dx} + \frac{y^3}{x} = \frac{1}{x}$ (x > 0).
- Use **dfield6** to plot the slope field for the differential equation $y' = 2y 3e^{-t}$. Plot the solution satisfying y(0) = 1.001. What happens to the solution as $t \to \infty$? Plot the solution satisfying y(0) = 0.999. What happens to this solution as $t \to \infty$?
- Find the explicit solution of the Separable Equation $\frac{dy}{dt} = 4y y^2$, y(0) = 8. What is the largest open interval containing t = 0 for which the solution is defined?
- $\overline{\mathbf{F}}$ The graph of f(y) vs y is as shown:

- (a) Find the equilibrium solutions of the autonomous differential equation $\frac{dy}{dt} = f(y)$.
- (b) Determine the stability of each equilibrium solution.
- G Solve the differential equation $\frac{d\theta}{dr} = \frac{2r\theta}{\theta^2 r^2}$.
- (a) If $y' = -2y + e^{-t}$, y(0) = 1 then compute y(1).
 - (b) Experiment using the Euler Method (eul) with step sizes of the form $h = \frac{1}{n}$ to find the smallest value of n which will give a value y_n that approximates the above true solution at t = 1 within 0.05.
- [I] (a) If $y' = 2y 3e^{-t}$, y(0) = 1 then compute y(1).
 - (b) Experiment using the Euler Method (eul) with step sizes of the form $h = \frac{1}{n}$ to find the smallest value of n which will give a value y_n that approximates the above true solution at t = 1 within 0.05.

Consider the initial value problem $\begin{cases} y' = 2ty - y^2 \\ y(1) = 2.5 \end{cases}$. Using the Euler, Improved Euler and Runge-Kutta methods (eul, rk2, rk4 respectively) with h = 0.1 to complete this table:

	Euler	Improved Euler	Runge-Kutta
t_n	y_n	y_n	y_n
1.0			
1.1			
1.2			
1.3			
1.4			
1.5			
1.6			

- Choosing smaller and smaller step sizes h does not guarantee better and better approximations even for a simple initial value problem like $\begin{cases} \frac{dy}{dt} = t(y-1) \\ y(-10) = 0 \end{cases}.$
 - (a) Verify that $y(t) = 1 e^{\frac{(t^2 100)}{2}}$ is a solution of the above initial value problem.
 - (b) Approximate the actual solution at t = 10 (note that y(10) = 0) using the Runge-Kutta method (**rk4**) with h = 0.2, h = 0.1 and h = 0.05 and fill in the table:

h	Runge-Kutta Approximation at $t = 10$	Actual Solution at $t = 10$
0.20		0.0000
0.10		0.0000
0.05		0.0000

- Approximation methods for differential equations can be used to estimate definite integrals:
 - (a) Show that $y(x) = \int_0^x e^{-t^2} dt$ satisfies the initial value problem $\frac{dy}{dx} = e^{-x^2}$, y(0) = 0.
 - (b) Use the Runge-Kutta Method (**rk4**) with h = 0.1 to approximate y(1.5), i.e., $\int_0^{1.5} e^{-t^2} dt$.

To transform any 2nd order linear differential equation P(t)y'' + Q(t)y' + R(t)y = G(t) into an equivalent 1st order linear system of equations

$$\begin{cases} x_1'(t) = a_{11}(t)x_1(t) + a_{12}(t)x_2(t) + g_1(t) \\ x_2'(t) = a_{21}(t)x_1(t) + a_{22}(t)x_2(t) + g_2(t) \end{cases}$$

one can use the substitution $\mathbf{x_1}(\mathbf{t}) = \mathbf{y}$ and $\mathbf{x_2}(\mathbf{t}) = \mathbf{y}'$. Transform the initial value problem

$$2y'' + 3y' - ty = 3e^t$$
, $y(0) = 1$, $y'(0) = -4$

into an equivalent system of 1st order equations with initial conditions.

- N If $y' = xy^2 y^3$ and y(1) = 2, find y''(1) and y'''(1).
- From the theory of elasticity, if the ends of a horizontal beam (of uniform cross-section and constant density) are supported at the same height in vertical walls, then its vertical displacement y(x) satisfies the boundary value problem $\begin{cases} y'''' = -P \\ y(0) = y(L) = 0 \end{cases}$, where P > 0 is a constant depending on the beam's density and rigidity and L is the distance between supporting walls:

- (a) Solve the above boundary value problem when L=4 and P=24.
- (b) Show that the maximum displacement occurs at the center of the beam $x = \frac{4}{2} = 2$.
- P Using Laplace Transforms, solve this boundary value problem: $\begin{cases} y'' + 4y = 16t \\ y(0) = 0 \\ y(\frac{\pi}{4}) = 0 \end{cases} (*).$

Hint: Solve the initial value problem $\begin{cases} y'' + 4y = 16t \\ y(0) = 0 \\ y'(0) = A \end{cases}$ and then determine A from (*).

You can use Laplace transforms to find particular solutions to some nonhomogeneous differential equations. Use Laplace transforms to find a particular solution, $y_p(t)$, of $y'' + 4y = 10e^t$.

Hint: Solve the initial value problem $\begin{cases} y'' + 4y = 10e^t \\ y(0) = 0 \\ y'(0) = 0 \end{cases} .$

(You will get a different particular solution if you use Undetermined Coefficients or Variation of Parameters.)

- Tank # 1 initially contains 50 gals of water with 10 oz of salt in it, while Tank # 2 initially contains 20 gals of water with 15 oz of salt in it. Water containing 2 oz/gal of salt flows into Tank # 1 at a rate of 5 gal/min and the well-stirred mixture flows from Tank # 1 into Tank # 2 at the same rate of 5 gal/min. The solution in Tank # 2 flows out to the ground at a rate of 5 gal/min. If $x_1(t)$ and $x_2(t)$ represent the number of ounces of salt in Tank # 1 and Tank # 2, respectively, SET UP BUT DO NOT SOLVE an initial value problem describing this system.
- If $\vec{\mathbf{x}}^{(1)}(t)$ and $\vec{\mathbf{x}}^{(2)}(t)$ are linearly independent solutions to the 2×2 system $\vec{\mathbf{x}}' = A\mathbf{x}$, then the matrix $\Phi(t) = (\vec{\mathbf{x}}^{(1)}(t), \mathbf{x}^{(2)}(t))$ is called a **Fundamental Matrix** for the system. Find a Fundamental Matrix $\Phi(t)$ of the system $\vec{\mathbf{x}}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \vec{\mathbf{x}}$.
- Γ Find a particular solution $\vec{\mathbf{x}}_p(t)$ of these nonhomogeneous systems:

(a)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} \vec{\mathbf{x}} + \begin{pmatrix} 5e^{2t} \\ 3 \end{pmatrix}$$

(b)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} \vec{\mathbf{x}} + \begin{pmatrix} 0 \\ 4e^t \end{pmatrix}$$

(c)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} \vec{\mathbf{x}} + \begin{pmatrix} 10\cos t \\ 0 \end{pmatrix}$$