Supplementary Problems

A. For what value(s), if any, of \(A \) will \(y = Axe^{-x} \) be a solution of the differential equation \(2y' + 2y = e^{-x} \)? For what value(s), if any, of \(B \) will \(y = Be^{-x} \) be a solution?

B. Using the substitution \(u(x) = y + x \), solve the differential equation \(\frac{dy}{dx} = (y + x)^2 \).

C. Using the substitution \(u(x) = y^3 \), solve the differential equation \(y^2 \frac{dy}{dx} + \frac{y^3}{x} = \frac{1}{x} \) \((x > 0)\).

D. Use dfield6 to plot the slope field for the differential equation \(y' = 2y - 3e^{-t} \).
 Plot the solution satisfying \(y(0) = 1.001 \). What happens to the solution as \(t \to \infty \)?
 Plot the solution satisfying \(y(0) = 0.999 \). What happens to this solution as \(t \to \infty \)?

E. Find the explicit solution of the Separable Equation \(\frac{dy}{dt} = 4y - y^2 \), \(y(0) = 8 \). What is the largest open interval containing \(t = 0 \) for which the solution is defined?

F. The graph of \(f(y) \) vs \(y \) is as shown:

 (a) Find the equilibrium solutions of the autonomous differential equation \(\frac{dy}{dt} = f(y) \).
 (b) Determine the stability of each equilibrium solution.

G. Solve the differential equation \(\frac{d\theta}{dr} = \frac{2r\theta}{r^2 - r^2} \).

H. (a) If \(y' = -2y + e^{-t} \), \(y(0) = 1 \) then compute \(y(1) \).
 (b) Experiment using the Euler Method (eul) with step sizes of the form \(h = \frac{1}{n} \) to find the smallest value of \(n \) which will give a value \(y_n \) that approximates the above true solution at \(t = 1 \) within 0.05.

I. (a) If \(y' = 2y - 3e^{-t} \), \(y(0) = 1 \) then compute \(y(1) \).
 (b) Experiment using the Euler Method (eul) with step sizes of the form \(h = \frac{1}{n} \) to find the smallest value of \(n \) which will give a value \(y_n \) that approximates the above true solution at \(t = 1 \) within 0.05.
Consider the initial value problem \(\begin{cases} y' = 2ty - y^2 \\ y(1) = 2.5 \end{cases} \). Using the Euler, Improved Euler and Runge-Kutta methods (\texttt{eul}, \texttt{rk2}, \texttt{rk4} respectively) with \(h = 0.1 \) to complete this table:

\[
\begin{array}{|c|c|c|c|}
\hline
 t_n & \text{Euler} & \text{Improved Euler} & \text{Runge-Kutta} \\
\hline
1.0 & & & \\
1.1 & & & \\
1.2 & & & \\
1.3 & & & \\
1.4 & & & \\
1.5 & & & \\
1.6 & & & \\
\hline
\end{array}
\]

Choosing smaller and smaller step sizes \(h \) does not guarantee better and better approximations even for a simple initial value problem like \(\begin{cases} \frac{dy}{dt} = t(y - 1) \\ y(-10) = 0 \end{cases} \).

(a) Verify that \(y(t) = 1 - e^{\frac{(t^2-100)}{2}} \) is a solution of the above initial value problem.

(b) Approximate the actual solution at \(t = 10 \) (note that \(y(10) = 0 \)) using the Runge-Kutta method (\texttt{rk4}) with \(h = 0.2, h = 0.1 \) and \(h = 0.05 \) and fill in the table:

\[
\begin{array}{|c|c|c|}
\hline
 h & \text{Runge-Kutta Approximation at } t = 10 & \text{Actual Solution at } t = 10 \\
\hline
0.20 & & 0.0000 \\
0.10 & & 0.0000 \\
0.05 & & 0.0000 \\
\hline
\end{array}
\]

Approximation methods for differential equations can be used to estimate definite integrals:

(a) Show that \(y(x) = \int_0^x e^{-t^2} \, dt \) satisfies the initial value problem \(\frac{dy}{dx} = e^{-x^2}, \ y(0) = 0 \).

(b) Use the Runge-Kutta Method (\texttt{rk4}) with \(h = 0.1 \) to approximate \(y(1.5) \), i.e., \(\int_0^{1.5} e^{-t^2} \, dt \).
To transform any 2nd order linear differential equation \(P(t)y'' + Q(t)y' + R(t)y = G(t) \) into an equivalent 1st order linear system of equations

\[
\begin{align*}
 x'_1(t) &= a_{11}(t)x_1(t) + a_{12}(t)x_2(t) + g_1(t) \\
 x'_2(t) &= a_{21}(t)x_1(t) + a_{22}(t)x_2(t) + g_2(t)
\end{align*}
\]

one can use the substitution \(x_1(t) = y \) and \(x_2(t) = y' \). Transform the initial value problem

\[
2y'' + 3y' - ty = 3e^t, \quad y(0) = 1, \quad y'(0) = -4
\]

into an equivalent system of 1st order equations with initial conditions.

If \(y' = xy^2 - y^3 \) and \(y(1) = 2 \), find \(y''(1) \) and \(y'''(1) \).

From the theory of elasticity, if the ends of a horizontal beam (of uniform cross-section and constant density) are supported at the same height in vertical walls, then its vertical displacement \(y(x) \) satisfies the boundary value problem

\[
\begin{align*}
 y''' &= -P \\
 y(0) &= y(L) = 0 \\
 y'(0) &= y'(L) = 0
\end{align*}
\]

where \(P > 0 \) is a constant depending on the beam’s density and rigidity and \(L \) is the distance between supporting walls:

![boundary value problem diagram]

(a) Solve the above boundary value problem when \(L = 4 \) and \(P = 24 \).

(b) Show that the maximum displacement occurs at the center of the beam \(x = \frac{4}{2} = 2 \).

Using Laplace Transforms, solve this boundary value problem:

\[
\begin{align*}
 y'' + 4y &= 16t \\
 y(0) &= 0 \\
 y\left(\frac{\pi}{4}\right) &= 0
\end{align*}
\]

\(\text{Hint: Solve the initial value problem} \quad \begin{align*}
 y'' + 4y &= 16t \\
 y(0) &= 0 \\
 y'(0) &= A
\end{align*} \text{ and then determine } A \text{ from (*)}. \)

You can use Laplace transforms to find particular solutions to some nonhomogeneous differential equations. Use Laplace transforms to find a particular solution, \(y_p(t) \), of \(y'' + 4y = 10e^t \).

\(\text{Hint: Solve the initial value problem} \quad \begin{align*}
 y'' + 4y &= 10e^t \\
 y(0) &= 0 \\
 y'(0) &= 0
\end{align*} \)

(You will get a different particular solution if you use Undetermined Coefficients or Variation of Parameters.)
Tank # 1 initially contains 50 gals of water with 10 oz of salt in it, while Tank # 2 initially contains 20 gals of water with 15 oz of salt in it. Water containing 2 oz/gal of salt flows into Tank # 1 at a rate of 5 gal/min and the well-stirred mixture flows from Tank # 1 into Tank # 2 at the same rate of 5 gal/min. The solution in Tank # 2 flows out to the ground at a rate of 5 gal/min. If $x_1(t)$ and $x_2(t)$ represent the number of ounces of salt in Tank # 1 and Tank # 2, respectively, **SET UP BUT DO NOT SOLVE** an initial value problem describing this system.

If $\vec{x}^{(1)}(t)$ and $\vec{x}^{(2)}(t)$ are linearly independent solutions to the 2×2 system $\vec{x}' = A\vec{x}$, then the matrix $\Phi(t) = (\vec{x}^{(1)}(t), \vec{x}^{(2)}(t))$ is called a **Fundamental Matrix** for the system. Find a Fundamental Matrix $\Phi(t)$ of the system $\vec{x}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \vec{x}$.

Find a particular solution $\vec{x}_p(t)$ of these nonhomogeneous systems:

(a) $\vec{x}' = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} \vec{x} + \begin{pmatrix} 5e^{2t} \\ 3 \end{pmatrix}$

(b) $\vec{x}' = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 4e^t \end{pmatrix}$

(c) $\vec{x}' = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} \vec{x} + \begin{pmatrix} 10 \cos t \\ 0 \end{pmatrix}$