
Given below is the graph of a function, y = f(x). Use this graph to answer questions #1 and #2:

1. Find the intervals for which the function is decreasing.

$$A.[-1,-3] \cup [0,4]$$

$$B.[-3,0]$$

$$C.[-4,-3] \cup [0,2]$$

$$D.[-4,2]$$

$$E.[-3,0] \cup [1,4]$$

2. Find the values of x for which f(x) > 0. Express your answer in interval notation.

$$A.(-4,0)\cup(1,2)$$

$$B.(-2,1)$$

$$C.(-4,0)$$

$$D.(-4,-2)\cup(1,2)$$

3. Suppose y is directly proportional to the product of x and w and inversely proportional to the square root of t. If x=3, w=2, and t=4, then y=12. Find y when x=5, w=1, and t=9.

A.
$$y = 4$$

B.
$$y = \frac{160}{3}$$

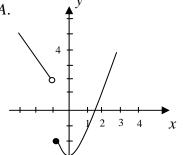
C.
$$y = 3$$

D.
$$y = \frac{20}{3}$$

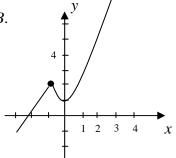
E. Not enough information given.

Use the functions $f(x) = \sqrt{2x+1}$ and $g(x) = x^2 - 6$ to answer questions #4 and #5:

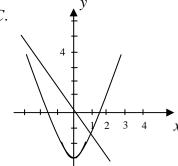
4. Find (f-g)(4).

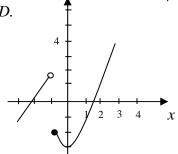

- A. 7
- *B*. 13
- C. -19
- D. 25
- *E*. None of the above

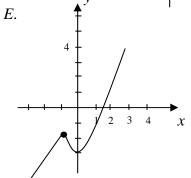
5. Find and simplify $(g \circ f)(x)$.


- A. $x^2 \sqrt{2x+1} 6$
- B. $\sqrt{2x^3 12x + 1}$
- $C. \left(\sqrt{2x+11}\right)\left(x^2-6\right)$
- $D. \sqrt{2x^2 11}$
- E. 2x-5
- 6. Which of the following graphs depicts the piecewise-defined function given below?

$$f(x) = \begin{cases} -2x & \text{if } x < -1\\ x^2 - 3 & \text{if } x \ge -1 \end{cases}$$


A.


B.



C.

D.

- 7. If the point P(3,5) is on the graph of y = f(x), find the corresponding point on the graph of y = 2f(x+4).
 - A.(6,9)
 - B.(-1,10)
 - C. (6,1)
 - D. (7,10)
 - E. None of the above
- 8. Explain in words how the graph of y = -f(x) + 5 compares to the graph of y = f(x).
 - A. Reflect the graph of y = f(x) through the x-axis first, then shift left 5.
 - B. Reflect the graph of y = f(x) through the y-axis first, then shift up 5.
 - C. Reflect the graph of y = f(x) through the x-axis first, then shift right 5.
 - D. Reflect the graph of y = f(x) through the x-axis first, then shift up 5.
 - E. Reflect the graph of y = f(x) through the y-axis first, then shift right 5.
- 9. Solve the inequality. Express the answer in interval notation.

$$\frac{\left(x-1\right)\left(x+3\right)}{x-5} < 0$$

$$A.(-\infty,1)\cup(1,5)$$

$$B. (-3,1) \cup (5,\infty)$$

$$C. (-\infty, -3) \cup (1, \infty)$$

$$D.(-\infty,5)\cup(5,\infty)$$

$$E.(-\infty,-3)\cup(1,5)$$

10. Express $f(x) = 2x^2 - 16x + 25$ in standard form.

A.
$$f(x) = 2(x-4)^2 + 9$$

B.
$$f(x) = 2(x+4)^2 - 9$$

C.
$$f(x) = 2(x-4)^2 - 7$$

D.
$$f(x) = 2(x+4)^2 + 7$$

- E. None of the above
- 11. Given $f(x) = x^2 2x$, find and simplify $\frac{f(x+h) f(x)}{h}$.

$$A. \ \frac{x^2 + h^2 - 2h}{h}$$

B.
$$2x + h - 2$$

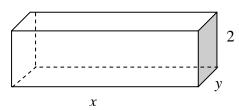
$$C. 2x-2$$

D.
$$x^2 + h - 2$$

E. None of the above

12. Solve the following system of equations for x.

$$\begin{cases} x^2 + y = 9 \\ x - y + 3 = 0 \end{cases}$$


A.
$$x = -3$$
, $x = 2$

B.
$$x = -1$$
, $x = 6$

C.
$$x = -2$$
, $x = 3$

$$D. \ x = -6, \ x = 1$$

- E. There is no solution for x.
- 13. An open box with length x feet, width y feet, and height 2 feet is shown below. It is known that the surface area for this box is 92 square feet and the equation to represent this is xy + 4x + 4y = 92. Express the volume of this box as a function of x.

A.
$$V(x) = 2x(92-4x^2)$$

$$B. \ V(x) = 2x \left(\frac{23 - x}{x + 1}\right)$$

$$C. V(x) = 2x^2$$

$$D. V(x) = 2x \left(\frac{92 - 4x}{x + 4}\right)$$

E. Not enough information given.

14. Two children were bouncing a ball. During one particular bounce, the ball traveled a horizontal distance of 6 feet and its maximum height above the ground was 4 feet. The path was in the shape of a parabola. Find the standard equation of the parabola described by this information. Let *x* represent the horizontal distance in feet from the point the bounce started and *y* represent the height above the ground in feet.

A.
$$y = -(x-6)^2 + 4$$

B.
$$y = -\frac{3}{8}(x-4)^2 + 6$$

C.
$$y = -\frac{4}{9}(x-3)^2 + 4$$

D.
$$y = -\frac{3}{2}(x-2)^2 + 6$$

E.
$$y = -\frac{1}{9}(x-6)^2 + 4$$

15. The math club, The Radicals, sold two different types of shirts. T-shirts sold for \$9 apiece while sweatshirts sold for \$16 apiece. The secretary misplaced the individualized order forms but knows 57 total people placed an order and has written a check in the amount of \$751 to cover the entire order. If *x* represents the number of T-shirts ordered and *y* the number of sweatshirts ordered, choose the system of equations that can be used to find *x* and *y*. Do not solve.

A.
$$\begin{cases} x + y = 57 \\ 16x + 9y = 751 \end{cases}$$

B.
$$\begin{cases} x + y = 57 \\ 9x + 16y = 751 \end{cases}$$

C.
$$\begin{cases} x + y = 751 \\ 9x + 16y = 57 \end{cases}$$

$$D. \begin{cases} x + y = 751 \\ 16x + 9y = 57 \end{cases}$$

E. None of the above