The Formula Page may be used. It will be attached to the final exam.

1. Calculate $\frac{d y}{d x}$ if $y=\cos (1-2 x)$.
A. $-\sin (1-2 x)$
B. $-2 \sin (1-2 x)$
C. $2 \sin (1-2 x)$
D. $\sin (1-2 x)$
E. $-2 \cos (1-2 x)$
2. Find y^{\prime} if $y=x \tan ^{2} x$.
A. $2 x \tan x+\tan ^{2} x$
B. $2 x \tan x \sec ^{2} x$
C. $x \sec ^{2} x+\tan ^{2} x$
D. $2 x \tan x \sec ^{2} x+\tan ^{2} x$
E. None of these.
3. If $\sin \theta=-0.5473$ and $\pi<\theta<\frac{3 \pi}{2}$, find θ in radians. Give your answer correct to 4 decimal places.
A. -0.5791
B. 3.7207
C. 3.1511
D. 2.5625 E. 1.761
4. Find the slope of the line perpendicular to the line containing the points $(-2,4)$ and $(6,-3)$.
A. $-8 / 7$
B. $-7 / 8$
C. $1 / 4$
D. $8 / 7$
E. $-1 / 2$
5. Give the equation, in slope-intercept form, of the line which is parallel to the line $2 y-6 x-5=0$ and passes through the point $(-1,3)$.
A. $y=3 x+10$
B. $y=\frac{1}{3} x-9$
C. $y=\frac{1}{3} x+2$
D. $y=-3 x$
E. $y=3 x+6$
6. If $f(x)=\frac{x}{x^{2}+1}$, find $\frac{1}{f(3)}$.
A. $3 / 10$
B. $3 / 16$
C. $16 / 3$ D
D. $10 / 3$ E. $1 / 3$
7. If $f(x)=\frac{2}{x}$ then $\frac{f(x+\Delta x)-f(x)}{\Delta x}=$
A. $\frac{-2}{x^{2}}$
B. $\frac{2}{x+\Delta x}-\frac{2}{x}$
C. $\frac{-2}{x(x+\Delta x)}$
D. $\frac{2}{x(x+\Delta x)}$
E. $\frac{-2}{x^{2}+\Delta x}$
8. $\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x^{2}-1}=$
A. 3 B. 1 C. ∞ D. 0 E. 5
9. If the tangent line to the graph of $y=f(x)$ at $(2,3)$ has equation $x-y+1=0$, then $f^{\prime}(2)=$
$\begin{array}{cc}\text { A. } 1 & \text { B. } 3 / 2\end{array}$
C. $2 / 3 \mathrm{D}$
D. $-2 / 3$ E. $-3 / 2$
10. The derivative of $\frac{x^{2}+1}{x+5}$ is
A. $\frac{(x+5)(2 x)-\left(x^{2}+1\right)}{(x+5)^{2}}$
B. $2 x$
C. $\frac{(x+5)(2 x)}{\left(x^{2}+1\right)^{2}}$
D. $\frac{\left(x^{2}+1\right)+(x+5)(2 x)}{(x+5)^{2}}$ E. $\frac{\left(x^{2}+1\right)-(x+5)(2 x)}{(x+5)^{2}}$
11. If $y=\left(3-x^{2}\right)^{3}$ then $y^{\prime \prime}=$
A. $-6 x\left(3-x^{2}\right)^{2}$
B. $24 x^{2}\left(3-x^{2}\right)-6\left(3-x^{2}\right)^{2}$
C. $6\left(3-x^{2}\right)$
D. $24 x^{2}\left(3-x^{2}\right)$
E. None of these.
12. The line tangent to the graph of $f(x)=x-\frac{1}{x}$ at $(2,3 / 2)$ has slope
A. $3 / 4$
B. $3 / 2$
C. 0
D. $1 / 4$
E. $5 / 4$
13. A point moves along the x-axis in such a way that its distance, s, from the origin at time $t \geq 1$ is given by $s=\left(t^{3}-t\right)^{3 / 2}$. Find the velocity of the point when $t=2$. Give your answer correct to two decimal places.
A. 3.67
B. 3.83
C. 40.42
D. 36.74
E. 21.08
14. Differentiate $y=\sin \left(x^{2}\right)$. $\frac{d y}{d x}=$
A. $\cos \left(x^{2}\right)$
B. $2 x \cos \left(x^{2}\right)$ C. $-\cos \left(x^{2}\right)$
D. $\cos (2 x)$ E. $-2 x \cos \left(x^{2}\right)$
15. Find y^{\prime} if $y=x \tan x$.
A. $\sec ^{2} x$ B. $x \sec ^{2} x$ C. $x \tan 1+\tan x \quad$ D. $1+\sec ^{2} x$ E. $x \sec ^{2} x+\tan x$
16. Find $f^{\prime}(x)$ if $f(x)=\frac{x}{\cos (4 x)}$. $f^{\prime}(x)=$
A. $\frac{\cos (4 x)+4 x \sin (4 x)}{\cos ^{2}(4 x)}$
B. $\frac{-1}{4 \sin (4 x)}$
C. $\frac{\cos (4 x)-x \sin (4 x)}{\cos ^{2}(4 x)}$
D. $\frac{\cos (4 x)+x \sin (4 x)}{\cos ^{2}(4 x)}$
E. $\frac{-4 x \sin (4 x)}{\cos ^{2}(4 x)}$
17. The maximum value of $f(x)=x^{3}(40-x)^{2}$ on the closed interval, $0 \leq x \leq 40$, occurs at $x=$ A. 20 B. 15 C. 35 D. 18 E. 24
18. Which of the following best describes the graph of $y=4 x^{3}-3 x^{4}$? The graph has a
A. relative maximum point and two points of inflection.
B. relative maximum point, a relative minimum point and one point of inflection.
C. a relative minimum point and two points of inflection.
D. a relative minimum point, two relative maximum points and two points of inflection.
E. None of these.
19. Which of the following best describes the graph of $f(x)=\frac{x^{2}+1}{x^{2}-1}$?
A. Vertical asymptotes $x=1, x=-1$, and symmetric to the x-axis.
B. Vertical asymptotes $x=1, x=-1$ but not symmetric to either the x or the y-axis.
C. Vertical asymptotes $x=1, x=-1$ and symmetric to the y-axis.
D. No vertical asymptotes and symmetric to the y-axis.
E. Vertical asymptote $x=1$ and symmetric to the x-axis.
20. Find the area of the region bounded by the curves $x^{2}+4 y=0$ and $x^{2}-4 y-8=0$.
A. $2 / 3$
B. $16 / 3$
C. 6
D. $4 / 3$
E. $10 / 3$
21. What is the area of the largest rectangle with sides parallel to the axes which can be inscribed in the first quadrant under the parabola $y=4-x^{2}$? (Give your answer correct to 2 decimal places.)
A. 1.15
B. 1.33
C. 3.08
D. 4.00
E. 2.67
22. A box with square base and no top is to have a volume of $108 \mathrm{in} .^{3}$. What is the smallest possible surface area of such a box.
A. 32 in. ${ }^{2}$
B. 24 in. ${ }^{2}$
C. 256 in. ${ }^{2}$
D. 108 in. ${ }^{2}$
E. 56 in. ${ }^{2}$
23. Find the value of $d y$ and Δy for $y=2 x^{3}-4 x, x=2$ and $d x=\Delta x=0.1$. Give your answer correct to two decimal places.
A. $d y=2, \Delta y=2.12$
B. $d y=2, \Delta y=2.46$
C. $d y=2.12, \Delta y=2$
D. $d y=2.46, \Delta y=2$
E. None of these.
24. Calculate $\lim _{x \rightarrow \infty} \frac{2+3 x-2 x^{3}}{3-4 x+x^{3}}$.
A. 2 B. ∞ C. $2 / 3$ D. $-3 / 4$ E. -2
25. Evaluate $\int \sqrt{2 x+1} d x$
A. $\frac{2}{3}(2 x+1)^{3 / 2}+C$
B. $\frac{1}{3}(2 x+1)^{3 / 2}+C$
C. $(2 x+1)^{-1 / 2}+C$
D. $2(2 x+1)^{1 / 2}+C$
E. None of these.
26. Evaluate $\int_{1}^{2}\left(6 \sqrt{x}-\frac{1}{2 \sqrt{x}}\right) d x$. Give your answer correct to 2 decimal places.
A. 9.90
B. 6.90
C. 5.66
D. 7.35
E. None of these
27. An object is thrown vertically downward from the top of a building 200 ft high with an initial velocity of $40 \mathrm{ft} / \mathrm{sec}$. Find its velocity when it hits the ground. $\left(s=-16 t^{2}-40 t+200\right.$.)
A. $-40 \mathrm{ft} / \mathrm{sec}$
B. $-200 \mathrm{ft} / \mathrm{sec}$
C. $-120 \mathrm{ft} / \mathrm{sec}$
D. $-80 \mathrm{ft} / \mathrm{sec}$ E. None of these.
28. Calculate the area bounded by the parabola $y=x^{2}$ and the line $y=x+2$.
A. $9 / 2$
B. $10 / 3$
C. $7 / 6$
D. $15 / 2$ E. None of these.
29. Calculate the volume generated by revolving the area bounded by $y=\sqrt{x}$, the x -axis and $x=4$ about the y -axis. (Express your answer as a definite integral.)
A. $\pi \int_{0}^{4} x d x$
B. $\pi \int_{0}^{4} \sqrt{x} d x$
C. $2 \pi \int_{0}^{4}(4-x) \sqrt{x} d x$
D. $2 \pi \int_{0}^{4} x^{2} d x$ E. $2 \pi \int_{0}^{4} x^{3 / 2} d x$
30. Find the function, y, satisfying the following conditions: $\frac{d y}{d x}=3 x^{2}-1$, and the graph of y passes through the point $(1,3)$.
A. $y=x^{3}-x+3$ B. $y=x^{3}-x$ C. $y=6 x-3$ D. $y=6 x$ E. $y=3 x^{3}-x+1$
31. Calculate the volume generated by revolving the area bounded by $y=\sqrt{x}$, the y-axis, and the line $y=2$, about the x-axis. (Express your answer as a definite integral.)
A. $\pi \int_{0}^{4}(2-\sqrt{x})^{2} d x$
B. $\pi \int_{0}^{4}(4-x) d x$
C. $2 \pi \int_{0}^{4}(2-\sqrt{x}) d x$
D. $2 \pi \int_{0}^{4}(4 \sqrt{x}-x) d x$
E. $\pi \int_{0}^{4} x d x$
32. If $f^{\prime}(x)=4 x-3$ and $f(0)=7$ calculate $f(2)$.
A. 5 B. 2
C. 7
D. 9
E. 3
33. Calculate the centroid of a quarter circle of radius r.
A. $\bar{x}=\frac{r}{3 \pi}, \bar{y}=\frac{r}{3 \pi}$ B. $\bar{x}=\frac{4 r}{3}, \bar{y}=\frac{4 r}{3}$
C. $\bar{x}=\frac{4 r}{\pi}, \bar{y}=0$ D. $\bar{x}=\frac{4 r}{\pi}, \bar{y}=\frac{4 r}{\pi}$
E. $\bar{x}=\frac{4 r}{3 \pi}, \bar{y}=\frac{4 r}{3 \pi}$
34. Calculate the x-coordinate of the centroid, \bar{x}, of the area given in problem 26 , if the area is $16 / 3$ square units.
A. $\bar{x}=2$
B. $\bar{x}=3 / 2$
C. $\bar{x}=9 / 5$
D. $\bar{x}=12 / 5$
E. $\bar{x}=1 / 5$
35. Find the work done in pumping the water out of the top of a cylindrical tank 5 ft in radius and 10 ft high, if the tank is initially half full of water, which weighs $62.4 \mathrm{lb} / \mathrm{ft}^{3}$.
A. $93,750 \pi \mathrm{ft}-\mathrm{lb}$ B. $58,500 \pi \mathrm{ft}-\mathrm{lb}$ C. $7,800 \pi \mathrm{ft}-\mathrm{lb}$ D. $15,600 \pi \mathrm{ft}-\mathrm{lb}$ E. None of these.
36. A spring of natural length 12 ft . requires a force of 6 lb . to stretch it 2 ft . Find the work done in stretching it 6 ft . $(F=k x)$
A. $54 \mathrm{ft}-\mathrm{lb}$
B. $108 \mathrm{ft}-\mathrm{lb}$ C. $6 \mathrm{ft}-\mathrm{lb}$
D. $36 \mathrm{ft}-\mathrm{lb}$ E. $24 \mathrm{ft}-\mathrm{lb}$
37. A vertical rectangular floodgate on a dam is 5 ft long and 4 ft deep. Find the force on the floodgate if its upper edge is 3 ft below the surface. (The weight of water is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$.) Give your answer correct to the nearest integer.
A. 7644 lb
B. 3900 lb C. 1248 lb
D. 6240 lb E. 2100 lb
38. A horizontal tank with vertical circular ends is filled with oil. If the radius of each end is 2 m , find the force on one end of the tank. (Assume w is the weight of the oil.) Express your answer as a definite integral. (Hint: Assume that the origin is at the center of one of the circular ends.)
A. $2 w \int_{0}^{2} y \sqrt{4-y^{2}} d y$
B. $w \int_{-2}^{2} \sqrt{4-y^{2}} d y$
C. $2 w \int_{-2}^{2}(2-y) \sqrt{4-y^{2}} d y$
D. $2 w \int_{-2}^{2}(2-y) d y$
E. None of these.
39. Grant and Stadium Streets are straight and perpendicular to each other. A black 1997 Porsche 911 is going on Grant Street toward the intersection of the two streets at 60 mph (miles per hour), and a red 1993 Volkswagen Golf is going on Stadium Street toward the same intersection at a rate of 40 mph . At what rate is the distance between the two cars decreasing when the Porsche is $1 / 2$ mile from the intersection and the Golf is $3 / 8$ mile from it?
A. 40 mph
B. 56 mph
C. 60 mph
D. 72 mph E. 32 mph
40. The line perpendicular to the graph of $f(x)=x-\frac{1}{x}$ at $\left(2, \frac{3}{2}\right)$ has slope
A. $3 / 4$
B. $3 / 2$
C. 0
D. $1 / 4$ E. $-4 / 5$
41. Find the center C and radius r of the circle whose equation is

$$
x^{2}+y^{2}-10 x+6 y+30=0
$$

A. $C=(-5,3) ; r=2$
B. $C=(-5,3) ; r=4$
C. $C=(5,-3) ; r=8$
D. $C=(5,-3) ; r=4$
E. $C=(5,-3) ; r=2$
42. If $y^{3}+x^{2}=9$ and $\frac{d x}{d t}=5$, find $\frac{d y}{d t}$ when $x=1$.
A. $-5 / 6$ B. $2 / 3$ C. -10 D. $1 / 3$ E. $10 / 3$
43. Water is flowing into a tank which is in the shape of a right circular cylinder standing on its circular base. If the water is flowing in at a rate of 80 cu . ft. per min. and the radius of the base of the tank is 4 ft ., how fast is the water rising when the water is 10 ft . deep?
A. $\frac{\pi}{5} \mathrm{ft} / \mathrm{min}$
B. $5 \pi \mathrm{ft} / \mathrm{min}$
C. $\frac{50}{\pi} \mathrm{ft} / \mathrm{min}$
D. $\frac{5}{\pi} \mathrm{ft} / \mathrm{min}$ E. $50 \pi \mathrm{ft} / \mathrm{min}$
44. Find the mean value of $f(x)=x^{1 / 3}$ on the interval $[0,2]$.
A. $\frac{3}{2^{2 / 3}}$
B. $\frac{3}{4}$
C. $\frac{1}{2^{4 / 3}}$
D. $\frac{3}{2^{1 / 3}}$ E. $\frac{3}{2^{5 / 3}}$
45. Find the root mean square of $f(x)=\sqrt{x}(1-x)$ on the interval $[0,2]$.
A. $1 / \sqrt{3}$
B. $2 / 3$
C. $2 / \sqrt{3}$
D. $\sqrt{3} / 2$ E. $1 / \sqrt{6}$

Answers

1. C; 2. D; 3. B; 4. D; 5. E; 6. D; 7. C; 8. A; 9. A; 10. A; 11. B; 12. E; 13. C; 14. B; 15. E; 16. A; 17. E; 18. A; 19. C; 20. B; 21. C; 22. D; 23. A; 24. E; 25. B; 26. B; 27. C; 28. A; 29. E; 30. A; 31. B; 32. D; 33. E; 34. D; 35. B; 36. A; 37. D; 38. C; 39. D; 40. E; 41. E; 42. A; 43. D; 44. E; 45. A.
