THE SECOND DERIVATIVE TEST

Suppose f is a function of two variables x and y, and that all the second-order partial derivatives are continuous. Let

$$
D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

and suppose (a, b) is a critical point of f.

1. If $D(a, b)<0$, then f has a saddle point at (a, b),
2. If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then f has a relative maximum at (a, b).
3. If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then f has a relative minimum at (a, b).
4. If $D(a, b)=0$, the test is inconclusive.

LEAST-SQUARES LINE

The equation of the least-squares line for the n points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{n}, \mathrm{y}_{n}\right)$, is $y=m x+b$, where m and b are solutions to the system of equations

$$
\begin{aligned}
\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right) m+\left(x_{1}+x_{2}+\cdots+x_{n}\right) b & =x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \\
\left(x_{1}+x_{2}+\cdots+x_{n}\right) m+n b & =y_{1}+y_{2}+\cdots+y_{n}
\end{aligned}
$$

TRAPEZOIDAL RULE

$$
\int_{a}^{b} f(x) d x \equiv \frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right],
$$

where $a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b$ subdivides $[a, b]$ into n equal subintervals of length $\Delta x=\frac{b-a}{n}$.

ERROR ESTIMATE FOR THE TRAPEZOIDAL RULE

If M is the maximum value of $\left|f^{\prime \prime}(x)\right|$ on the interval $a \leq x \leq b$, then

$$
\left|E_{n}\right| \leq \frac{M(b-a)^{3}}{12 n^{2}}
$$

GEOMETRIC SERIES

If $0<|r|<1$, then

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

TAYLOR SERIES

The Taylor series of $f(x)$ about $x=a$ is the power series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\ldots
$$

Examples: (with $a=0$)

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \text { for }-\infty<x<\infty ; \quad \ln x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n}, \text { for } 0<x \leq 2
$$

