Math 223	Exam 3	Summer 2006
Name:		
Student ID #:		

Instructions:

- 1. Make sure you have 8 pages (not including this cover page).
- 2. No books or notes. Only non-programmable, non-graphing calcultors.
- 3. You must show your work! No credit will be given for answers without sufficient work. Partial credit will only be given for work shown. You must justify your answers.
- 4. Put your answers in the boxes provided. These will be considered your final answers.
- 5. You have 1 hour to complete the exam. Good Luck!!!

Page	Max Possible	Points
1	14	
2	16	
3	14	
4	14	
5	10	
6	10	
7	12	
8	10	
Total	100	

I. Multiple choice questions.

Note: You must show your work and circle the correct answer to receive full credit.

- (7 pts) 1. Given $g(x) = \frac{6-3x}{2x-5}$, which of the following statements are true?
 - I. The vertical asymptote is x = 2
 - II. The horizontal asymptote is $y = -\frac{3}{2}$
 - III. The x-intercept is (2,0)
 - IV. The *y*-intercept is $(0, \frac{5}{2})$

- A. I and II only
- B. I and IV only
- C. II and III only
- D. III only
- E. II, III and IV only

- (7 pts) 2. The graph of $f(x) = \frac{1}{1+x^2}$ looks most like:
 - A.

В.

D.

1

- II. This part of the exam consists of eight problems. Show all your work to be eligible for partial credit.
- (8 pts) 1) Find the critical points of

$$g(t) = \frac{200}{t} + 2t - 50$$

(8 pts) 2) Find the inflection points of

$$f(x) = 8x^2 - x^4$$

(14 pts) 3. Let $f(x) = -2x^3 + 6x^2 + 1$

(7 pts) (a) Find the intervals where f is increasing and the intervals where f is decreasing.

(7 pts) (b) Find the intervals where f is concave upward and the intervals where f is concave down.

(10 pts) 8. The concentration C of a certain drug t hours after injection into muscle tissue is given by

$$C(t) = \frac{2t}{16 + t^3}.$$

When is the concentration greatest?

I. 1. C

2. A

2.
$$\left(\pm \frac{2}{13}, \frac{80}{9}\right)$$

3 (AIncr. on (0,2), decr. on (-0,0), (2,00)

(b) concave up on $(-\infty,1)$, concave down on $(1,\infty)$

4: (a) relative max @ (-2,-3) relative min @ (2,8

5. als. max @ (2, 4) als. min @ (8, 2)

7. 1.65 × 3.3 × 1.83

8. After 2 hours