N AND LIMITS

« *Hesvton was born on Christmas Day in
:ar of Galileo’s death. When he
-ambridge University in 1661 Newton
much mathematics, but he learned
v reading Euclid and Descartes and
1 the lectures of saac Barrow.
« was closed because of the plague in
1666, and Newton returned home to
what he had learned. Those twao years
wingly productive for at that time he
st of his major discoveries: (1) his
ation of functions as sums of infinite
s mcluding the binomial theorem; {2) his
hfferential and integral calculus; {3) his
wtion and law of universal gravitation;
£ % prism experiments on the nature of
color. Because of a fear of controversy
sm, he was reluctant to publish his dis-
ind it wasn't until 1687, at the urging of
omer Halley, that Newton published
Mathematica. In this work, the greatest
treatise ever written, Newton set forth
i of calculus and used it to investigate
ses, fluid dynamics, and wave motion,
explain the motion of planets and comets.
neginnings of calculus are found in the
tions of areas and volumes by ancient
scholars such as Eudoxus and Archimedes.
ih aspects of the idea of a limit are
in their “method of exhaustion,” Eudoxus
s himedes never explicitly formulated the
t of a limit. Likewise, mathematicians
: Cavalieri, Fermat, and Barrow, the imme-
s precursors of Newton in the development
Hlus, did not actually use limits. It was
=« Newton who was the first to talk explicitly
a:t hunits. He explained that the main idea
limits is that quantities “approach nearer
| gae by any given difference.” Newton stated
#a¢ the limit was the basic concept in calculus,
w7t was left to later mathematicians like

]

tiy 1o clarify his ideas about {imits.

i
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3+ 2t — 1 lim (x> + 2x2—1)
li === (by Law 5)
-2 5= 3x _lm}z (5 — 3x)

lim x* + 2 lim x*> — lim 1
x—=2 x—— x—>=2

= X R - (by 1. 2, and 3)
lim 5 —3 lim x

x—=2 x—>=2
—2P +2(-2)7 — 1
= ( )5 — 3((_2)) (by 9, 8. and 7)
__ b
11 e

NOTE = If we let f(x) = 2x* — 3x + 4, then f(5) = 39. In other words, we would have
gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct substi-
tution provides the correct answer in part (b). The functions in Example 2 are a polyno-
mial and a rational function, respectively, and similar use of the Limit Laws proves that
direct substitution always works for such functions (see Exercises 53 and 54). We state this
fact as follows.

Direct Substitution Property If f is a polynomial or a rational function and a is in the
domain of £, then

lim f(x) = f(@)

Functions with the Direct Substitution Property are called continuous at a and will be
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as
the following examples show.

o xt=1
EXAMPLE 3 Find lim ——.

=1 x — 1

SOLUTION Let f(x) = (x? — 1)/(x — 1). We can’t find the limit by substituting x = 1
because f(1) isn’t defined. Nor can we apply the Quotient Law because the limit of the
denominator is 0. Instead, we need to do some preliminary algebra. We factor the numer-
ator as a difference of squares:

x2—1

x—1

= Dx+1)
N x—1

The numerator and denominator have a common factor of x — 1. When we take the limit
as x approaches 1, we have x # 1 and so x — 1 # 0. Therefore, we can cancel the com-
mon factor and compute the limit as follows:
x*—1 = Dx+1)

= lim—————

x—1

x—1
=l_irr}(x+1)
=1+1=2

The limit in this example arose in Section 2.1 when we were trying to find the tangent to
the parabola y = x? at the point (1, 1).

iaditg
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24
e

0 —i
FIGURE 2

The graphs of the functions f (from
Example 3) and g (from Example 4)

Explore a limit like this one interactively.
Resources / Module 2
/ The Essential Examples
/ Example €

NOTE = In Example 3 we were able to compute the limit by replacing the given func-
tion f(x) = (x* — 1)/(x — 1) by a simpler function, g(x) = x + 1, with the same limit.
This is valid because f(x) = g(x) except when x = 1, and in computing a limit as x
approaches 1 we don’t consider what happens when x is actually equal to 1. In general,
if f(x) = g(x) when x # a, then

Iim f(x) = lim g(x)
EXAMPLE 4 Find liHll g(x) where

x+1 if x#1
glx) = .
T if x=1

SOLUTION Here g is defined at x = 1 and g(1) = , but the value of a limit as x
approaches 1 does not depend on the value of the function at 1. Since g(x) = x + 1 for
x # 1, we have

lirrll g(x) = Iin} x+1)=2

Note that the values of the functions in Examples 3 and 4 are identical except when
x =] (see Figure 2) and so they have the same limit as x approaches 1.

B+h-—9

EXAMPLE 5 Evaluate lim
h—0 h

SOLUTION If we define
B+h?-—9

Fn) = p

then, as in Example 3, we can’t compute lim,—.o F(h) by letting & = 0 since F(0) is
undefined. But if we simplify F(k) algebraically, we find that

9+ 6h+h’)—9 O6h+h

=6+h
h h

F(h) =

(Recall that we consider only & #* 0 when letting # approach 0.) Thus

3+4)-9
lmi——l——=nm@+m=6
h—0 h h—0 -
JIE+9 -3

EXAMPLE 6 Find lim

t—0 t2

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the denomina-
tor is 0. Here the preliminary algebra consists of rationalizing the numerator:

ViE+9 -3 2+ 9-3 J1P+9+3
B = lim 5 5
t P t Vi2+9+3

+9 -9 _ lim t?
=0 (/12 + 9 + 3)

lim

—0

RN
1 1

1 1
= lim = = - |
11 219+ ; 2 + 3+ 6 |
=09 +3 flim (2 +9) + 3 3

This calculation confirms the guess that we made in Example 2 in Section 2.2. .




4t The result of Example 7 looks plausible
teom Figure 3.

y
y=1|x|
‘ 0
FIGURE 3
Yy
el
yY== i
0 b4

FIGURE 4

Hi 1t is shown in Example 3'in
Section 2.4 that lim ,—.o+ vx = 0.
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Some limits are best calculated by first finding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 2.2. It says that a two-sided
limit exists if and only if both of the one-sided limits exist and are equal.

[¥] Theorem lim f(x) = L if and only if lim f(x) = L = lim f(x) —{

When computing one-sided limits, we use the fact that the Limit Laws also hold for
one-sided limits.

EXAMPLE 7 Show that lim |x| = 0.

SOLUTION Recall that

l’_ x ifx=0
. —x if x<O0

Since |x| = x for x > 0, we have

lim |x| = lim x =0
x—0t x—0%
For x < 0 we have |x| = —x and so

lim [x| = lim (-x) =0
x—0" x—0"
Therefore, by Theorem 1,

s

lim |x] =0
x—0

EXAMPLE 8 Prove that lin(l) —|x| does not exist.
x> X
SOLUTION tim 4L i £ = tim 1= 1
x—0t  x x—=0t x x—0%
im A2 = i =~ i (-1) = —1
x—0" X x>0 X x—0"

Since the right- and left-hand limits are different, it follows from Theorem 1 that
lim,—o | x |/x does not exist. The graph of the function f(x) = |x|/x is shown in
Figure 4 and supports the one-sided limits that we found. it

EXAMPLE 9 If

f(x):{‘/ —4 ifx>4

X
8 —2x ifx<4

determine whether lim,—,4 f(x) exists.

SOLUTION Since f(x) = +/x — 4 for x > 4, we have

lirgf(x) = lir£1+ Vx—4=4—-4=0




110 Il CHAPTER 2 LIMITS AND DERIVATIVES

Since f(x) = 8 — 2x for x < 4, we have

Y lim f(x) = lim 8 ~2x) =8 —2:4=0

The right- and left-hand limits are equal. Thus, the limit exists and

0 4 x lirr} fx)=0
FIGURE 5 The graph of f is shown in Figure 5. e

EXAMPLE 10 The greatest integer function is defined by [x] = the largest integer
that is less than or equal to x. (For instance, [4] = 4, [4.8] = 4, [#] = 3, ﬂ\/i ]] =1,

[-i] = —1.) Show that lim, -5 [x] does not exist.
I1IT Other notations for [x] are [x] and [x]. SOLUTION The graph of the greatest integer function is shown in Figure 6. Since [} = 3
y for 3 < x < 4, we have
i ': lim [ = lim 3 =3
3 J —o x—37 x—>3+
[
27 =] Since [[x] = 2 for 2 < x < 3, we have
1 *——o0
—— lim [[x] = lim 2 =2
0 1 2 3 4 § X . x—3" x—3"
-—

Because these one-sided limits are not equal, lim .3 [x]] does not exist by Theorem 1.

FIGURE 6
Greatest integer function

The next two theorems give two additional properties of limits. Their proofs can be
found in Appendix F.

[2] Theorem If f(x) < g(x) when x is near a (except possibly at @) and the limits
of f and g both exist as x approaches a, then

lim f(x) < lim g(x)

—
[3] The Squeeze Theorem If f(x) < g(x) < h(x) when x is near a (except possibly
at a) and

lim f(x) = lim A(x) = L

then lim g(x) = L

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the
Pinching Theorem, is illustrated by Figure 7. It says that if g(x) is squeezed between f(.1i
and /(x) near a, and if f and 4 have the same limit L at a, then ¢ is forced to have the sanx
FIGURE 7 limit L at a.
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1
EXAMPLE 11 Show that lirr(l) x*sin— = 0.
x—> X

SOLUTION First note that we cannot use

lim

x—0

. !
lim x%sin— =
x—0 X

watch an animation of a similar limit.
Resources / Module 2
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P |
x° ¢+ lim sin —
X

x—0

because lim .o sin(1/x) does not exist (see Example 4 in Section 2.2). However, since

1
-l<ssin—=1
X
we have, as illustrated by Figure 8,
2 H 1 2
—x = xsiIm— <X
x
di
y=x*

/ Basics of Limits
/ Sound of a Limit that Exists

FIGURE 8

We know that

limx?=0 and

x>0

obtain

x—=0

12,3 Exercises

. 1
lim x%sin —

lim (—x?) =0

x—0

Taking f(x) = —x?, g(x) = x?sin(1/x), and A(x) = x? in the Squeeze Theorem, we

=0

X [y

. Given that

(c) li_in +h(x)

lim f(x) = =3 lim g(x) = 0 lim A(x) = 8
find the limits that exist. If the limit does not exist, explain (e) lim {z(()):))
why. e
() lim [ f(x) + A(x)] {(b) lim [ f(x)]? (g) lim f((x))
x—a x—a x—a g X

1
@ I

_g(x)
O

. 2f(x)
W 0@ -1
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2. The graphs of f and g are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why.

y4 ¥y

y=flx)
' 1 — 1

I |

@ Lm[£() + g()] ®) lim [£(3) + g()]

im L9
@I g

(®) lim /3 + f(x)

(©) lim [f(x)g(x)]
(e li_rgx3f(x)

3-9 m Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).

2%+ 1
. 4 2 _ im—
3 Xl_l}tg(?:)c +2x*-x+1) 4, :lclgzlx2+6x—4
5. Iin% (x> = 4)(x>+5x~ 1) 6. lilel (> + 1)+ 3
1+ 3x 3 ]
L i 7 8 lim ~Ju*+ +
7£1—I>I}<1+4x2+3x4) 8. lim, Vut+3ut6

9. lim V16 — x*

Q =3 o o o a o o © o a

10. (a) What is wrong with the following equation?

x2+x—6
x— 2

=x+3

(b) In view of part (a), explain why the equation

L x4 x—-6
M imed

is correct.

11-30 m Evaluate the limit, if it exists.

X +x—6 x2+5x+4

. lip——— 2. hm =
) xZ —x+6 . xz — 4x
18 lim———— L I
] t2 _ 9 . )C2 — 4x
15 bm, 22+ T+ 3 6. lim »*=3x—4
4+ B2 —16 il
17 im A A 16 18. lim =
r—0 h -l xt — 1
19, fjm LFA L 20, i EF B =8
b—0 h h—0 h

21. 1

23.

25.

27.

29.

3l

933

35
36.

7.

38.

9—1t I+ hR-1

- 2T
o ox+2-3 o ox*t—16 3
lim ———— 24. lim
x—7 x—7 x—»2 x—2
.1
1 1
lim ——> 2. lim | — — —5—
x—-4 4+ x =0 \ ¢ “+t
2 — 81 3+ k)7 -3
lim 2 28, 1im S
=9 Jx —3 h—0 h
1 1 N
im { —— — — 0. lim ~———
P—I}%(z 1+¢ t) 30. lim 1— x

a a a £l a a a a

(a) Estimate the value of

. s x
I AT 3% 1
by graphing the function f(x) = x/(/1 + 3x — 1).
(b) Make a table of values of f(x) for x close to 0 and guess

the value of the limit.
(c) Use the Limit Laws to prove that your guess is correct.

. (a) Use a graph of

fa = BRI

to estimate the value of lim, _,, f(x) to two decimal place
(b) Use a table of values of f(x) to estimate the limit to four
decimal places.
(c¢) Use the Limit Laws to find the exact value of the limit.

. Use the Squeeze Theorem to show that

lim,_,, x? cos 207rx = 0. Ilustrate by graphing the functions
f(x) = —x2 g(x) = x% cos 20mx, and A(x) = x* on the samc
screen.’

. Use the Squeeze Theorem to show that

. . T
lim /x3 + x?sin— =0
X

x—0

Tllustrate by graphing the functions f, g, and 4 (in the notatios
of the Squeeze Theorem) on the same screen.

If1<f(x)=<x*+2x + 2forall x, find lim,_, _, f(x).

If 3x =< f(x) < x> + 2 for 0 < x < 2, evaluate lim__,, f(1)

. 2
Prove that lim x*cos — = 0.
x—0 X

Prove that lim Vx e = 0,
X >

39-44 1 Find the limit, if it exists. If the limit does not exist,
explain why.

39.

+4
lim [x + 4 20, tim 124

——4- x+ 4




v 2 2x? — 3x
2] 82, lim 23
v 2 s=15 | 2x — 3|

: . ") 1 ) 1 1
o) w i (57

ﬁ Eoe «ignwm (or sign) function, denoted by sgn, is defined by

-1 ifx<O
sgnx = 0 ifx=0
1 if x>0

"4} Sketch the graph of this function.
ib Find each of the following limits or explain why it does not
exist.
(i) _lir(r)1+ sgn x (i) lirgl_ sgn x
(ii) lim sgn x @iv) lim |'sgn x|
*.. it
' ifx=2
ifx>2

4 — x*

e Find Himz- £(x) and lim oo+ £(x).
by Does lim ., f(x) exist?
&) Sketch the graph of f.
2
-~ 1

ot ) = ——
|lx = 1]
ia) Find

(1) _linli+ F(x) (ii) lir}l_ F(x)
th) Does lim, _, | F(x) exist?
t¢) Sketch the graph of F.

# Lot
X if x<<O
h(x) = ¢ x? fo<x=s2
8—x ifx>2

1) Evaluate each of the following limits, if it exists.
1 lir(x]1+ h(x) (ii) lin(l) h(x) (iii) lin} h(x)
(iv) Iigl_ h(x) ) lirg h(x) (vi) lin% h(x)
(b) Sketch the graph of h.

#1. () [f the symbol | denotes the greatest integer function
defined in Example 10, evaluate
M Jim [d G lim [
(b) If » is an integer, evaluate
(i) lim [[x] (i) lim [x]

(¢) For what values :of a does lim

(i) lim [

x

[x] exist?

x—a

W, Let f(x) = x — {x].
ta) Sketch the graph of f.

51,

52

53.
54.

55.

56.

57.

58.

59.

60.
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(b) If n is an integer, evaluate
O lim f) G lim f()
(c) For what values of a does lim,—., f(x) exist?
If f(x) = [x] + [—x]. show that lim, _,, f(x) exists but is not
equal to f(2).

In the theory of relativity, the Lorentz contraction formula

L=LyJ1—v¥c?

expresses the length L of an object as a function of its velocity
v with respect to an observer, where L, is the length of the
object at rest and c is the speed of light. Find lim,_, .- L and
interpret the result. Why is a left-hand limit necessary?

If p is a polynomial, show that lim,_, , p(x) = p(a).

If r is a rational function, use Exercise 53 to show that
lim,_,, r(x) = r(a) for every number a in the domain of r.
If

if xis rational

fx) = {)‘

0 if xis irrational
prove that lim,_.¢ f(x) = 0.

Show by means of an example that lim_, . [ f(x) -+ g(x)] may
exist even though neither lim, _, , f(x) nor lim,_, , g(x) exists.

Show by means of an example that lim__, , [ f{x)g(x)] may exist
even though neither lim, _, , f(x) nor lim,_, , g(x) exists.

Xx—a

Evaluate l'mLX———2
4 xL2\/3—x-1'

Is there a number a such that

x4+ ax+a+3
x*+x—-2

lim

x—=2
exists? If so, find the value of a and the value of the limit.

The figure shows a fixed circle C, with equation

{x — 1)> + > = 1 and a shrinking circle C, with radius r and
center the origin. P is the point (0, r), Q is the upper point of
intersection of the two circles, and R is the point of intersection
of the line PQ and the x-axis. What happens to R as C, shrinks,
that is, as » — 0% 7

y

A
C

G
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44. Suppose that im ., f(x) = o and lim,.. g(x) = ¢, where ¢ is (b) lim [ fgx)] =0 if ¢>0
a real number. Prove each statement. e
(@) lim [f(x) + g(x)] = o (¢) lim [f(x)g(x)] = —o0 if ¢ <O

[l 2.5 continuify

T

Explore continuous functions interactively. We noticed in Section 2.3 that the limit of a function as x approaches a can often be fount
%y, Resources / Module 2 simply by calculating the value of the function at a. Functions with this property are calle
@ / (;Osntt::t”g;/ Continsity continuous at a. We will see that the mathematical definition of continuity corresponds

closely with the meaning of the word contfinuity in everyday language. (A continuous
process is one that takes place gradually, without inferruption or abrupt change.)

(1] Definition A function f is continuous at a number a if

lim f(x) = f(a)

I As illustrated in Figure 1, if £ is continuous, Notice that Definition | implicitly requires three things if f is continuous at a:

then the points (x, £(x)) on the graph of f . . .. .
approach the point (a, f(a)) on the graph. So 1. f(a) is defined (that is, a is in the domain of f)

’ there is no gap in the curve. 2. lim f(x) exists
' x—a

y 3. lim f(x) = f(a)
fx) The definition says that f is continuous at a if f(x) approaches f(a) as x approaches «
approaches 1 Thus, a continuous function f has the property that a small change in x produces only +
fa). small change in f(x). In fact, the change in f(x) can be kept as small as we please by keep

ing the change in x sufficiently smalil.

! If f is defined near a (in other words, f is defined on an open interval containing «

/_\ { except perhaps at a), we say that f is discontinuous at a, or f has a discontinuity at ¢. it 3

0 r o x £ is not continuous at a. . ]
Physical phenomena are usually continuous. For instance, the displacement or velocity

of a vehicle varies continuously with time, as does a person’s height. But discontinuitics

do occur in such situations as electric currents. [See Exampie 6 in Section 2.2, where the

As x approaches a,

FIGURE 1
Heaviside function is discontinuous at 0 because lim,.o H(z) does not exist.]
Geometrically, you can think of a function that is continuous at every number in un
K interval as a function whose graph has no break in it. The graph can be drawn withou
removing your pen from the paper.
y EXAMPLE 1 Figure 2 shows the graph of a function f. At which numbers is f discontinu-

. ous? Why?

SOLUTION It looks as if there is a discontinuity when a = 1 because the graph has a breuk
there. The official reason that f is discontinuous at 1 is that (1) is not defined.

The graph also has a break when a = 3, but the reason for the discontinuity is differ
ent. Here, f(3) is defined, but lim,—3 f{x) does not exist (because the left and right limi:- 2
are different). So fis discontinuous at 3.

What about @ = 5? Here, f(3) is defined and lim,_s f(x) exists (because the left and
right limits are the same). But
FIGURE 2 .

lim f(x) # f(5)

So f is discontinuous at 5.
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Now let’s see how to detect discontinuities when a function is defined by a formula.

EXAMPLE 2 Where are each of the following functions discontinuous?

1
19 — ifx#0
siesonices / Module 2 (a) flx) = rr-- (b) flx) =< x* ma
¢ Continuity x=2 1 ifx=0
/ Problems and Tests 2 5
X —x—
— ifx#2
© f)=9 x—2 (@ () =[x
1 if x=2

SOLUTION
(a) Notice that f(2) is not defined, so f is discontinuous at 2. Later we’ll see why f is
continuous at all other numbers.

(b) Here f(0) = 1 is defined but
. .1
=

does not exist. (See Example 8 in Section 2.2.) So fis discontinuous at 0.
(c) Here f(2) = 1 is defined and

xX—x-2 x—2x+ 1)
: T S . J T . /A S LV A VI L
lm () = fig " Z 5 = fim T = e+ 1) =3

exists. But
lim £() # £(2)

so f is not continuous at 2.

(d) The greatest integer function f(x) = [x] has discontinuities at all of the integers
because lim,_.. [x]] does not exist if # is an integer. (See Example 10 and Exercise 49 in
Section 2.3.) i

Figure 3 shows the graphs of the functions in Example 2. In each case the graph can’t
be drawn without lifting the pen from the paper because a hole or break or jump occurs in
the graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable
because we could remove the discontinuity by redefining f at just the single number 2.
[The function g(x) = x + 1 is continuous.] The discontinuity in part (b) is called an infi-
nite discontinuity. The discontinuities in part (d) are called jump discontinuities because
the function “jumps” from one value to another.

¥4 ¥ ¥4 Y4
s—o
1 le 1 . 1+ o0
0 1 2 X 0 X / 0 1 2 X 0 1 2 3 X
M

P—x—=2 {1/;;2 fx+0

 fg =2 ®) fx =1, T © f0x) ={ x—2 @ £ =]

#1GURE 3 Graphs of the functions in Example 2
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F [2] Definition A function f is continuous from the right at a number a if

lim () = £(@)

and f is continuous from the left at a if

lim £(x) = f(a)

L

EXAMPLE 3 At each integer n, the function f(x) = [x] [see Figure 3(d)] is continuous
from the right but discontinuous from the left because

lim f(x) = m [x] = n = f(n)

but limf(x) = li)rq [xl = n—1%# f(n)

[3] Definition A function f is continuous on an interval if it is continuous at
every number in the interval. (If f is defined only on one side of an endpoint of the
interval, we understand continuous at the endpoint to mean continuous from the
right or continuous from the left.)

EXAMPLE 4 Show that the function f(x) = 1 — /1 — x? is continuous on the
interval [—1, 1].

SOLUTION If —1 << a << 1, then using the Limit Laws, we have
lim f(x) = lim (1 — 1 — x2)
=1 - lim /1 — x? (by Laws 2 and 7)

x—a

| =1— /lim(1 — x?) (by 11)
: =1~ -a? (by 2,7, and 9)

= f(@)
y Thus, by Definition 1, f is continuous at a if —1 < @ < 1. Similar calculations show thai
=1-J1-2
Rl ! lim, f() = 1=f(-1) and  lim f() = 1 = £()
; so f is continuous from the right at —1 and continuous from the left at 1. Therefore,
0 1 > according to Definition 3, f is continuous on [~1, 1].
The graph of f is sketched in Figure 4. It is the lower half of the circle
FIGURE 4 2+ {y—-1P=1 .

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as
we did in Example 4, it is often convenient to use the next theorem, which shows how to _
build up complicated continuous functions from simple ones. -
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Theorem If f and g are continuous at ¢ and ¢ is a constant, then the following
functions are also continuous at a:

L f+yg 2 f—g 3. ¢f
4. fyg 5.5 if gla) # 0

Proot Each of the five parts of this theorem follows from the corresponding Limit Law
in Section 2.3. For instance, we give the proof of part 1. Since f and g are continuous at
a, we have

lim f(x) = fla) ~ and  lim g(x) = g(a)

Therefore
lim (f + g)(x) = lim [f(x) + g(x)]
= lim f(x) + lim g(x) ~ (by Law 1)
= f(a) + g(a)
=(f+9)a)
This shows that f + ¢ is continuous at a. gt

It follows from Theorem 4 and Definition 3 that if f and g are continuous on an inter-
val, then so are the functions f + g, f — g, cf, fg. and (if g is never 0) f/g. The following
theorem was stated in Section 2.3 as the Direct Substitution Property.

[5] Theorem

(a) Any polynomial is continuous everywhere; that is, it is continuous on
R = (—o0, ), )

(b) Any rational function is continuous wherever it is defined; that is, it is continu-
ous on its domain.

Proof
(a) A polynomial is a function of the form

P(x)=cix"+ courx" 14+ -+ cix + o

where co, ci, . . ., ¢, are constants. We know that
lim ¢ = ¢o (by Law 7)
x—>a
and lim x™ = aq™ m=12,...,n (by 9)

xX—>a

This equation is precisely the statement that the function f(x) = x™ is a continuous
function. Thus, by part 3 of Theorem 4, the function g(x) = cx™ is continuous. Since P
is a sum of functions of this form and a constant function, it follows from part 1 of

Theorem 4 that P is continuous.




128 i CHAPTER 2 LIMITS AND DERIVATIVES

4

P(cos 6, sin 8)
LN

0 Loy x

FIGURE 5

11l Another way to establish the limits in (6} is
to use the Squeeze Theorem with the inequality
sin § < @ (for 8 > 0}, which is proved in Sec-
tion 3.4. i

(b) A rational function is a function of the form

_ P(x)
0(x)

fx)

where P and Q are polynomials. The domain of fis D = {x € R|Q(x) # 0}. We know
from part (a) that P and Q are continuous everywhere. Thus, by part 5 of Theorem 4,
[ 1s continuous at every number in D.

As an illustration of Theorem 5, observe that the volume of a sphere varies continuoush
with its radius because the formula V(r) = $r#* shows that V is a polynomial function
of r. Likewise, if a ball is thrown vertically into the air with a velocity of 50 ft/s, then the
height of the ball in feet after f seconds is given by the formula & = 50¢ — 1672 Again this
is a polynomial function, so the height is a continuous function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits very
quickly, as the following example shows. Compare it with Example 2(b) in Section 2.3.

3 + 2 _
EXAMPLE 5 Find lim ~— 2% — 1
x—=2 5 —3x

SOLUTION The function

x3+2x2 -1

fo =53

is rational, so by Theorem 35 it is continuous on its domain, which is {x | x # 2).
Therefore

Lo xX+2x2-1 . B
Jm ——————= lim, fx) =f(=2)
A1 1
5 - 3(=2) 11

It turns out that most of the familiar functions are continuous at every number in their
domains. For instance, Limit Law 10 (page 106) implies that root functions are continu
ous. [Example 3 in Section 2.4 shows that f(x) = +/x is continuous from the right at 0.] §

From the appearance of the graphs of the sine and cosine functions (Figure 18 in
Section 1.2), we would certainly guess that they are continuous. We know from the defin
itionis of sin @ and cos 6 that the coordinates of the point P in Figure 5 are {cos 0, sint ). As
6~ 0, we see that P approaches the point (1, 0) and so cos 8 —> 1 and sin § — 0. Thus

ggr(l)0050=1 £1_1>I})31n0=0

Since cosQ = 1 and sin 0 = 0, the equations in (6) assert that the cosine and sine func-
tions are continuous at 0. The addition formulas for cosine and sine can then be used to
deduce that these functions are continuous everywhere (see Exercises 56 and 57).

It follows from part 5 of Theorem 4 that
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Intuitively, Theorem 8 is reasonable because if x is close to a, then g(x) is close to /»
and since f is continuous at b, if g(x) is close to b, then f(g(x)) is close to f(b). A prout
of Theorem 8 is given in Appendix F.

1 _—
EXAMPLE 7 Evaluate lim arcsin<l—£>.
x—1 — X
SOLUTION Because arcsin is a continuous function, we can apply Theorem 8:

. f1-x . 1=4x
lim arcsin 1— = arcsin| lim ————

x—1 - X x—1 — X

— arcsin(_yg; = j{)(ﬁ ﬁ))

1
il 1
arcsm(xl_r)rll T+ % \/)—C>

. T
= arcsin — = —
2 6

Let’s now apply Theorem 8 in the special case where f(x) = /x, with n being a post
tive integer. Then

f(g(x)) = Vg(x)
and f (lim g(x)) = Jlim g(x)
If we put these expressions into Theorem 8, we get
lim Yg(x) = /lim g(x)

and so Limit Law 11 has now been proved. (We assume that the roots exist.)

[9] Theorem If g is continuous at @ and f is continuous at g(a), then the composite
function f ¢ g given by (f° g)(x) = f(g(x)) is continuous at a.

This theorem is often expressed informally by saying “a continuous function of a con
tinuous function is a continuous function.”

Proof Since g is continuous at a, we have
lim g(x) = g(a)
Since f is continuous at b = g(a), we can apply Theorem 8 to obtain

lim f (g(x)) = f(g(a))

which is precisely the statement that the function A(x) = f(g(x)) is continuous at a; that
is, fo g is continuous at a. e
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EXAMPLE 8 Where are the following functions continuous?
(a) A(x) = sin(x?) (b) F(x) = In(1 + cosx)

SOLUTION
(a) We have h(x) = f(g(x)), where

g(x) = x? and f(x) = sinx

Now g is continuous on R since it is a polynomial, and f is also continuous everywhere.
Thus, 2 = fo g is continuous on R by Theorem 9.

(b) We know from Theorem 7 that f(x) = In x is continuous and g{x) = 1 + cos x

is continuous (because both y = 1 and y = cos x are continuous). Therefore, by
Theorem 9, F(x) = f(g(x)) is continuous wherever it is defined. Now In(1 + cos x) is
defined when 1 + cosx > 0. So it is undefined when cos x = —1, and this happens
when x = %1, =37, ... . Thus, F has discontinuities when x is an odd muitiple of
and is contimuous on the intervals between these values (see Figure 7). o

An important property of continuous functions is expressed by the following theorem,
whose proof is found in more advanced books on calculus.

The Intermediate Value Theorem Suppose that f is continuous on the closed inter-
val [a, b] and let N be any number between f{(a) and f(b), where f(a) # f(b).
Then there exists a number c¢ in (a, b) such that f(c) = N.

The Intermediate Value Theorem states that a continuous function takes on every inter-
mediate value between the function values f(a) and f(b). It is illustrated by Figure 8. Note
that the value N can be taken on once [as in part (a)] or more than once [as in part (b)].

y y
fB) |- - e (o)
N y=f(x)
N
fla) y= flx) fla) F-
0 c; c b x 0 4 ¢ ¢ I b x

(@) ®

If we think of a continuous function as a function whose graph has no hole or break,
then it is easy to believe that the Intermediate Value Theorem is true. In geometric terms it
says that if any horizontal line y = N is given between y = f(a) and y = f(b) as in Fig-
ure 9, then the graph of f can’t jump over the line. It must intersect y = N somewhere.

It is important that the function f in Theorem 10 be continuous. The Intermediate Value
Theorem is not true in general for discontinuous functions (see Exercise 44).

One use of the Intermediate Value Theorem is in locating roots of equations as in the
following example.




