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EXAMPLE 9 Show that there is a root of the equation
4> —6x*+3x—2=0

between 1 and 2.

SOLUTION Let f(x) = 4x® — 6x% + 3x — 2. We are looking for a solution of the given

‘equation, that is, a number ¢ between 1 and 2 such that f(c) = 0. Therefore, we take

a=1,b=2,and N = 0 in Theorem 10. We have
f)=4-6+3-2=-1<0
and fQ)=32-244+6-2=12>0

Thus, f(1) < 0 < f(2); that is, N = 0 is a number between f(1) and f(2). Now f is
continuous since it is a polynomial, so the Intermediate Value Theorem says there
is a number ¢ between 1 and 2 such that f(c) = 0. In other words, the equation
4x3 — 6x? + 3x — 2 = 0 has at least one root ¢ in the interval (1, 2). '

In fact, we can locate a root more precisely by using the Intermediate Value Theorem
again. Since

f(1.2) = -0.128 < 0 and f(1.3) = 0548 >0
a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,
f(1.22) = —0.007008 < 0 and f(1.23) = 0.056068 > 0

so a root lies in the interval (1.22, 1.23).

We can use a graphing calculator or computer to illustrate the use of the Intermediate ;
Value Theorem in Example 9. Figure 10 shows the graph of f in the viewing rectangle
[—1, 3] by [—3, 3] and you can see that the graph crosses the x-axis between 1 and 2. Fig
ure 11 shows the result of zooming in to the viewing rectangle [1.2, 1.3] by [—0.2, 0.2]
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FIGURE 10 FIGURE 11

In fact, the Intermediate Value Theorem plays a role in the very way these graphing
devices work. A computer calculates a finite number of points on the graph and turns on
the pixels that contain these calculated points. It assumes that the function is continuous
and takes on all the intermediate values between two consecutive points. The computer
therefore connects the pixels by turning on the intermediate pixels.
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B, Write an equation that expresses the fact that a function f
1= continuous at the number 4.

3 1t [ is continuous on (—, ©), what can you say about its
graph?

% tu) From the graph of f, state the numbers at which f is
discontinuous and explain why.
th) For each of the numbers stated in part (a), determine
whether f is continuous from the right, or from the left,

or neither.
y
-4 =2 0 2 4 6 x

4. I'rom the graph of g, state the intervals on which g is
continuous.

1\
R VAN

§. Sketch the graph of a function that is continuous everywhere
cxcept at x = 3 and is continuous from the left at 3.

—

. x

&. Sketch the graph of a function that has a jump discontinuity at
v = 2 and a removable discontinuity at x = 4, but is continu-
ous elsewhere.

1. A parking lot charges $3 for the first hour (or part of an hour)
and $2 for each succeeding hour (or part), up to a daily maxi-
mum of $10.

(a) Sketch a graph of the cost of parking at this lot as a func-
tion of the time parked there.

(b) Discuss the discontinuities of this function and their
significance to someone who parks in the lot.

8. Explain why each function is continuous or discontinuous.
(a) The temperature at a specific location as a function of time
(b) The temperature at a specific time as a function of the dis-
tance due west from New York City

(c¢) The altitude above sea level as a function of the distance
due west from New York City

(d) The cost of a taxi ride as a function of the distance traveled

(e) The current in the circuit for the lights in a room as a func-
tion of time

9. If f and g are continuous functions with f(3) = 5 and
lim,—; [2f(x) — g(x)] = 4, find ¢(3).
10-12 m Use the definition of continuity and the properties of lim-
its to show that the function is continuous at the given number.
0. fx) =x>++/7—x a=4
1 f(x) = (x + 2x°), a=—1
x+1
12 g(x)=—2x2_ T a=4

13-14 i Use the definition of continuity and the properties of lim-
its to show that the function is continuous on the given interval.

14, g(x) =23 —x, (-—,3]

2x + 3
x—2

13. f(x) = , 2,%)

a o o a a o a Bl o o a o

15-20 w1 Explain why the function is discontinuous at the given
number a. Sketch the graph of the function.

15, flx) =In|x — 2| a=?2
! if x# 1

— X

6. f)={x—1 " a=1
2 if x=1

. et if x<0

. f) = =0

17. {x2 ifx=0 “
x2—x
— fx#1

18. f(x) =x*—1 e a=1
1 if x=1
x2—x—-12

. . A

19 f) =4 x+3 L¥*73 a=-3
-5 if x=-3

1+x* ifx<l1

20. f(x)={ a=1

4—-x ifx=1

o a o o o o a o ° a o o

21-28 wm Explain, using Theorems 4, 5, 7, and 9, why the function
is continuous at every number in its domain. State the domain.

X

. r . — 3 + 53
X'+ 55+ 6 2. 6 = (1 + )

. Flx) =
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sin x
x+ 1

23. R(x) =x"+ 2x — 1 2. h(x) =

25. f(x) = e”sin5x 26. F(x) = sin"{(x? — 1)
27. G() =In(r* — 1) 28. H(x) = cos(e”¥)

29-30 i Locate the discontinuities of the function and illustrate by
graphing.

29. y = 30. y = In(tan’x)

I+ el

El a o a o ° o a o ) o a

31-34 1 Use continuity to evaluate the limit.
5+ x
3l lim—F———
=4 /5 + x

33. lim e* ™

x—1 -2

32, lim sin(x + sinx)

34, lim arctan(g)

3x? — 6x

o o o Ll K o a o a El o a

35-36 i Show that f is continuous on (—oo, ).

x* ifx<1
3. f(x)z{\/?c if x=1
sinx  if x < w/4
cosx if x = /4

36. f(x) = {

a El [} a Bl o a o a a o o

37-39 m Find the numbers at which £ is discontinuous. At which
of these numbers is f continuous from the right, from the left, or
neither? Sketch the graph of f.

1+x* ifx<0
3. f) =492 —x fO0<x=2
(x~=2P ifx>2

x+1 ifx<1
38 flx) =41/x fl<x<3

Vvx—=3 ifx=3

T x+2 ifx<O

39. fx)=1q¢" fosx=<1
2—x ifx>1

o o a a o ° ° o o a L} a

40. The gravitational force exerted by Earth on a unit mass at a dis-
tance r from the center of the planet is

M.
M <R
F(r) =
GM
>~ Hr=R
.

where M is the mass of Earth, R is its radius, and G is the grav-
itational constant. Is F a continuous function of r?

41. For what value of the constant c is the function f continuous
on (-0, ®)?

cx+ 1 ifx<3
f(x)—{cxz—l if x> 3

42. Find the constant ¢ that makes g continuous on (—oo, o).

x2—c? ifx<4
glx) = ‘
cx+20 ifx=4

43. Which of the following functions f has a removabie disconti-
nuity at a? If the discontinuity is removable, find a function ¢
that agrees with f for x # a and is continuous on R.

x2—2x—8
@ f) = — "5
x—7
® f)=""—"7 a=7

lx = 7]

x* + 64

x+4

Jx

, a=9
- X

a=—2

a=—4

©) flx) =

3

3
9

44. Suppose that a function f is continuous on [0, 1] except at
0.25 and that £(0) = 1 and f(1) = 3. Let N = 2. Sketch two
possible graphs of f, one showing that f might not satisfy the
conclusion of the Intermediate Value Theorem and one show-
ing that f might still satisfy the conclusion of the Intermediale
Value Theorem (even though it doesn’t satisfy the hypothesis)

@ flx) =

45. If f(x) = x> — x* + x, show that there is a number ¢ such
that f(c) = 10.

46. Use the Intermediate Value Theorem to prove that there is a
positive number ¢ such that ¢> = 2. (This proves the existence
of the number /2.)

47-50 m Use the Intermediate Value Theorem to show that there 1~
a root of the given equation in the specified interval.

47 x* +x~3=0, (1,2 48. ¥x=1-x (©,1)
50. nx=¢e* (1,2)

a ] a El a

49. cosx = x, (0,1)

o o o a a o

51-52 mi (a) Prove that the equation has at least one real root.
(b) Use your calculator to find an interval of length 0.01 that con-
tains a root.
5l. e* =2 —x

o a o Q o o a -3 a o a

5. x> —x*+2x+3=0

53-54 m (a) Prove that the equation has at least one real root.

(b) Use your graphing device to find the root correct to three deci-
mal places.

1
x+3

54, yx—-5=

o 8 a o £l a a a o o o

5. x5 —x~4=0
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t: ».oe that f s continuous at g if and only if 60. For what values of x is g continuous?
Ilirré fla + k) = f(a) g(x) = 0 if xis rational
" x if xis irrational

¥t prove that sine is continuous, we need to show that 61. Is there a number that is exactly 1 more than its cube?
s, sinx = sin g for every real number a. By Exercise 55

v« oquivalent statement is that 62. (a) Show that the absolute value function F(x) = | x| is contin-

uous everywhere.

(b) Prove that if f is a continuous function on an interval, then
sois | £

(c) Is the converse of the statement in part (b) also true? In
other words, if | f | is continuous, does it follow that f is

¥ raece that cosine is a continuous function. continuous? If so, prove it. If not, find a counterexample.

llirr(l) sinla + h) = sina
i
# w {0) to show that this is true.

A Tibetan monk leaves the monastery at 7:00 A.M. and takes
his usual path to the top of the mountain, arriving at 7:00 p.M.
The following morning, he starts at 7:00 A.M. at the top and

¥ -+ Prove Theorem 4, part 3. 63.
%1 Prove Theorem 4, part 5.

¥t what values of x is f continuous? takes the same path back, arriving at the monastery at 7:00 P.M.
o Use the Intermediate Value Theorem to show that there is a
flx) = {0 ff L8 .ratlo.nal point on the path that the monk will cross at exactly the same
1 if xis irrational time of day on both days.

2.6 Limits af Infinity; Horizontal Asymptotes

In Sections 2.2 and 2.4 we investigated infinite limits and vertical asymptotes. There we
let x approach a number and the result was that the values of y became arbitrarily large
(positive or negative). In this section we let x become arbitrarily large (positive or nega-

. & tive) and see what happens to y.
i -1 Let’s begin by investigating the behavior of the function f defined by
! 0 5
' 0.600000 flx) = ’“2—_1
; 0.800000 x+ 1
| 0.882353 as x becomes large. The table at the left gives values of this function correct to six decimal
N 0.923077 places, and the graph of f has been drawn by a computer in Figure 1.
Ho 0.980198 y
w0 0.999200 y=1
L 0.999800
fn
) 0.999998 K/J

N
YT

FIGURE 1

As x grows larger and larger you can see that the values of f(x) get closer and closer
to 1. In fact, it seems that we can make the values of f(x) as close as we like to 1 by taking
x sufficiently large. This situation is expressed symbolically by writing

x*—1
Im———F=1
xl—r}lxz-l-l

In general, we use the notation

lim f(x) = L

to indicate that the values of f(x) become closer and closer to L as x becomes larger and
larger.
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FIGURE 2
Examples illustrating lim f(x)=L

[T] Definition Let f be a function defined on some interval (a, ). Then
lim f(x) =

means that the values of f(x) can be made arbitrarily close to L by taking x suf-
ficiently large.
Another notation for lim .. f(x) = L is

f(x) L as x—w

The symbol o does not represent a number. Nonetheless, the expression 11m flx) =L
often read as

“the limit of f(x), as x approaches infinity, is L”
or “the limit of f(x), as x becomes infinite, is L”

or “the limit of f(x), as x increases without bound, is L”

The meaning of such phrases is given by Definition 1. A more precise definition, similat
to the &, & definition of Section 2.4, is given at the end of this section.

Geometric illustrations of Definition 1 are shown in Figure 2. Notice that there arc J
many ways for the graph of f to approach the line y = L (which is called a horzzonml ]
asymptote) as we look to the far right of each graph.

Referring back to Figure 1, we see that for numerically large negative values of x, the
values of f(x) are close to 1. By letting x decrease through negative values without bound.
we can make f(x) as close as we like to 1. This is expressed by writing

x?—1

im ———=1
xl—lglwxz-i-l

The general definition is as follows.

Definition Let f be a function defined on some interval {—oo, a). Then

lim f(x) =

x—>~—©

means that the values of f(x) can be made arbitrarily close to L by taking x suf-
ficiently large negative.




y
y=flx)
e b
0
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y=fx)
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0
HOURE 3

g eamples illustrating lim f(x)=L

Ny

|
Iy

FIGURE 4

£ = Lt I,\'

#IGURE 5
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Again, the symbol —co does not represent a number, but the expression lim f(x) = L
is often read as =
“the limit of f(x), as x approaches negative infinity, is L”

Definition 2 is illustrated in Figure 3. Notice that the graph approaches the line y = L as
we look to the far left of each graph.

[3] Definition The line y = L is called a horizontal asymptote of the curve
y = f(x) if either

lim f(x) =L or lim flx)=1L

For instance, the curve illustrated in Figure 1 has the line y = 1 as a horizontal asymp-
tote because
im 5L
im——— =
x—e x2 + 1
An example of a curve with two horizontal asymptotes is y = tan”'x. (See Figure 4.)
In fact,

(4] lim tan"'x = —— lim tan~'x = —
s 2 o 2
so both of the lines y = ~#/2 and y = 7/2 are horizontal asymptotes. (This follows from

the fact that the lines x = * /2 are vertical asymptotes of the graph of tan.)

EXAMPLE 1 Find the infinite limits, limits at infinity, and asymptotes for the function f
whose graph is shown in Figure 5.

SOLUTION We see that the values of f(x) become large as x — —1 from both sides, so
lim f (x) =

Notice that f(x) becomes large negative as x approaches 2 from the left, but large posi-
tive as x approaches 2 from the right. So

_lirgl_ flx) = —0 and 1ir£1+ f(x) = o0
Thus, both of the lines x = —1 and x = 2 are vertical asymptotes.

As x becomes large, it appears that f(x) approaches 4. But as x decreases through
negative values, f(x) approaches 2. So

lim f(x) = 4 and lim flx) =2

This means that both y = 4 and y = 2 are horizontal asymptotes. e
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FIGURE 6
llm —=0

1 1
EXAMPLE Z Find lim — and lim —.

x—x X x—>—® X

SOLUTION Observe that when x is large, 1/x is small. For instance,

1 1
—=0. = (.0001 ————— = (.000001
100 0.01 10,000 0 1,000,000

In fact, by taking x large enough, we can make 1/x as close to 0 as we please. Therefore,
according to Definition 1, we have

Similar reasoning shows that when x is large negative, 1/x is small negative, so we also
have

1
lim —=0

x——o X

It follows that the line y = O (the x-axis) is a horizontal asymptote of the curve y = 1/x.
(This is an equilateral hyperbola; see Figure 6.)

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infinity. It
can be proved that the Limit Laws listed in Section 2.3 (with the exception of Laws 9 and
10) are also valid if “x — a” is replaced by “x — ©” or “x — —.” In particular, if we
combine Laws 6 and 11 with the results of Example 2, we obtain the following important

tule for calculating limits.

[5] Theorem If » > O is a rational number, then

1
lim— =10
x—o X

If r > 0 is a rational number such that x” is defined for all x, then

1
lim —r=0

x—>—o X

EXAMPLE 3 Evaluate
y 3x2—x—2
im————
x—w 5x% + 4x + 1

and indicate which properties of limits are used at each stage.

SOLUTION As x becomes large, both numerator and denominator become large, so it isn’t
obvious what happens to their ratio. We need to do some preliminary algebra.

To evaluate the limit at infinity of any rational function, we first divide both the
numerator and denominator by the highest power of x that occurs in the denominator.
(We may assume that x # 0, since we are interested only in large values of x.) In this
case the highest power of x in the denominator is x?, so we have
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3 —x—2 3 _ 1 2
oo 3xr-x-2 . x? ) x  x?
lim —————— = lim— = lim
x—-w S5x% +4x + 1 o S5x° + 4x + 1 x> 4 1
B — St—+—=
X x X
. 1 2
lim (3 - = —{)
x—o0 x x
= (by Limit Law 5)
. 4 1
lim|5+—+ —
y x> X X
; =06 1 1
=Y > lim 3 — lim — — 2 lim —
x>0 x—o X x—w X
0 1 x = I I (by L, 2, and 3)
lim 5 + 4 lim— + lim —
x—>© x>0 X x—e X
3-0-0
=07 (by 7 and Theorem 5)
540+0
_3
5
RGURE 7 A similar calculation shows that the limit as x — — is also 2 Figure 7 illustrates the
W -x—2 results of these calculations by showing how the graph of the given rational function
AV 4x+1 approaches the horizontal asymptote y = 3. s

EXAMPLE 4 Find the horizontal and vertical asymptotes of the graph of the function

V2x2+ 1

f =33

SOLUTION Dividing both numerator and denominator by x and using the properties of

limits, we have
2+ L
V2x2+ 1 . x? -
]
X

lim—————= lim (since /x? = x for x > 0)
X—>0 3x —_ 5 X—> 0

1 / 1
lim /2 + — lim 2 + lim —
x—>0 X x>0 x—m X

1
lim (3 —£> lim 3 — 5 lim —
X

x—re0 x—® X

Therefore, the line y = v/2/3 is a horizontal asymptote of the graph of f.
In computing the limit as x — —o, we must remember that for x < 0, we have
Vx? = |x| = —x. So when we divide the numerator by x, for x < 0 we get

1 1 / 1
—m=—ﬁ\/§x2—+_l=— 2+;
X

;]
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4
2
-
X
2
-2
_35
X735
FIGURE 8
o N2x’+1
Y= "3x=5

Il We can think of the given function as having
a denominator of 1.

¥

y=yxi+l—x

FIGURE 9

1
—\[2+ =

. 2x2 + 1 . x
Therefore im ————= lim ——————
x—-= 3x — 5 X 5
3 R ——
X

1
—[2+ lim =
ot 52 _ V2

1
3—-5 lim —

x—>—® X

Thus, the line y = —+/2/3 is also a horizontal asymptote.
A vertical asymptote is likely to' occur when the denominator, 3x — 5, is 0, that is,
when x = 3. If x is close to § and x > 3, then the denominator is close to 0 and 3x — 5

is positive. The numerator +/2x2 + 1 is always positive, so f(x) is positive. Therefore

V2xr + 1

lim = o
=63 3Ix— 35

If x is close to 2 but x < 3, then 3x — 5 < 0 and so f(x) is large negative. Thus

V2x2+ 1

lim = —
=637 3x — 5
The vertical asymptote is x = % All three asymptotes are shown in Figure 8. -

EXAMPLE 5 Compute lim (\/x2 +1 - x).

SOLUTION Because both 4/x2 + 1 and x are large when x is large, it’s difficult to see what
happens to their difference, so we use algebra to rewrite the function. We first multiply
numerator and denominator by the conjugate radical:

NCZE IS
lim (v/x2 + 1 — x)=lim(vVx*+ 1 — x)\/;'z—__{_ﬁw

x—>ce x—®

lim
xoe Afx2+ 1+ x x—w x4+ 1+ x
The Squeeze Theorem could be used to show that this limit is 0. But an easier method is
to divide numerator and denominator by x. Doing this and using the Limit Laws, we obtain
1

1 x
. T T — ) = 1 1
}1_1){10( * ! x) ll—lllo\/xzﬁ-l-l-x 152 Vxt+ 1+ x

X

1

i X 0
= lim == =
x> JI+0+1
\/1+i2+1
X

0

Figure 9 illustrates this result.

The graph of the natural exponential function y = e* has the line y = 0 (the x-axis) as
a horizontal asymptote. (The same is true of any exponential function with base ¢ > 1.) In




FIGURE 10

the: problem-solving strategy for Example 6
oducing something extra (see page 80).

s the something extra, the auxiliary aid, is
Hus suw vaniable 2.
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fact, from the graph in Figure 10 and the corresponding table of values, we see that

lim ¢* =0

x——c

Notice that the values of e* approach 0 very rapidly.

y
X e’
ree 0 1.00000
-1 0.36788
-2 0.13534
X -3 0.04979
-5 0.00674
— -8 0.00034
0 1 x -10 0.00005 |

EXAMPLE 6 Evaluate lim e/~

x—0~

SOLUTION If we let £ = 1/x, we know that t — —oo as x — 0~. Therefore, by (6),

lim e¢'* = lim ¢’ =0

x>0 t——o0

(See Exercise 67.) s

EXAMPLE 7 Evaluate lim sin x.

X >0

SOLUTION As x increases, the values of sin x oscillate between 1 and —1 infinitely often
and so they don’t approach any definite number. Thus, lim, ... sin x does not exist. .o

”” Infinite Limits at nfimity

The notation
lim f(x) = o

is used to indicate that the values of f(x) become large as x becomes large. Similar mean-
ings are attached to the following symbols:

lm f() = lmf()=—  lim f()= -~

EXAMPLE 8 Find lim x> and lim x>

x—>00 X—>-00

SOLUTION When x becomes large, x> also becomes large. For instance,
10°> = 1000 100° = 1,000,000 1000* = 1,000,000,000

In fact, we can make x* as big as we like by taking x large enough. Therefore, we can
write
lim x* = o

x—%
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Y Similarly, when x is large negative, so is x*. Thus

y=x’ lim x* = —o

x——®

These limit statements can also be seen from the graph of y = x” in Figure 11. s

Looking at Figure 10 we see that

lim ¢* = o

x—>®

but, as Figure 12 demonstrates, y = e* becomes large as x — o at a much faster rate than

FIGURE 11 y =x".
lim x*= oo, lim x}=-m
y
100 J
FIGURE 12
e” is much larger than x* 0
when x is large.

EXAMPLE 9 Find lim (x? — x).

x—o

[@)] soLumion Note that we cannot write

lim (x? — x) = lim x* — lim x

Xx—0 xX—® x—>00

=0 —

' The Limit Laws can’t be applied to infinite limits because < is not a number (% —
b can’t be defined). However, we can write

lim (x* — x) = lim x(x — 1) =

x—>00

t
|
i
i

because both x and x — 1 become arbitrarily large and so their product does too. .

2
+
EXAMPLE 10 Find lim >~

—> 00 —_

SOLUTION As in Example 3, we divide the numerator and denominator by the highest
power of x in the denominator, which is just x:

because x + 1 —>oand3/x — 1 — —1 as x — oo, o |




FIGURE 13
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The next example shows that by using infinite limits at infinity, together with intercepts,
we can get a rough idea of the graph of a polynomial without having to plot a large num-
ber of points.

EXAMPLE 11 Sketch the graph of y = (x — 2)*(x + 1)*(x — 1) by finding its intercepts
and its limits as x — o and as x — —,

SOLUTION The y-intercept is £(0) = (—2)*(1)*(—1) = —16 and the x-intercepts are
found by setting y = 0: x = 2, —1, 1. Notice that since (x — 2)* is positive, the function
doesn’t change sign at 2; thus, the graph doesn’t cross the x-axis at 2. The graph crosses
the axis at —1 and 1.

When x is large positive, all three factors are large, so

li_I)IOlo x=2"x+1)Px=-1) =

When x is large negative, the first factor is large positive and the second and third factors
are both large negative, so

lim =2+ 1P(x— 1) =0

Combining this information, we give a rough sketch of the graph in Figure 13.

y
-1 0 1 2 x
y=(x—=2)x +1)’(x—1)
—16

|||| Precise Definifions

Definition 1 can be stated precisely as follows.

Definition Let f be a function defined on some interval (a, ©). Then

lim f(x) = L

means that for every & > 0 there is a corresponding number N such that l

|f(x) —L|<e whenever x>N

In words, this says that the values of f(x) can be made arbitrarily close to L (within a
distance &, where ¢ is any positive number) by taking x sufficiently large (larger than N,
where N depends on g). Graphically it says that by choosing x large enough (larger than
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some number N) we can make the graph of f lie between the given horizontal lin::
y=L —gand y =L + ¢ as in Figure 14. This must be true no matter how small w;
choose &. Figure 15 shows that if a smaller value of € is chosen, then a larger value of *
may be required.

y
y=L+e y=Ffx)
£ / NG ="} in here
y=L—¢
FIGURE 14 N; g
1&@3 flo=L when x is in here
:
y=Fx)
L y=L+eg
/
‘ y=L—¢g
- FIGURE 15 0 N x
P lim f(x)=L
| Similarly, a precise version of Definition 2 is given by Definition 8, which is illustrated
in Figure 16.
: Definition Let f be a function defined on some interval (—o, ). Then
o lim f(x) =L
means that for every € > 0 there is a corresponding number N such that
[flx) —L|l<e whenever x<N
Y
5 y=fx)
y=L+e
- FIGURE 16 N 0 x
i lim f(x)=L
In Example 3 we calculated that
i 3x* —x—2 3
im—_————— ==
x—o 5x% + 4x + 1 5
: , In the next example we use a graphing device to relate this statement to Definition 7 with -
: L=1%ande = 0.1 '




T )
Si+4x+1

FBURE 17

15
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EXAMPLE 12 Use a graph to find a number N such that

x?—x—2

m - 0.6 <0.1 whenever x> N

SOLUTION We rewrite the given inequality as

o5 X Tx=2
) Sx2 4+ 4x + 1 )

We need to determine the values of x for which the given curve lies between the horizon-
tal lines y = 0.5 and y = 0.7. So we graph the curve and these lines in Figure 17. Then
we use the cursor to estimate that the curve crosses the line y = 0.5 when x = 6.7. To
the right of this number the curve stays between the lines y = 0.5 and y = 0.7. Round-
ing to be safe, we can say that

3xt—x—-2

— - — 06 <01 whenever x>7
Sxc+4x + 1

In other words, for ¢ = 0.1 we can choose N = 7 (or any larger number) in Definition 7.

vk

1
EXAMPLE 13 Use Definition 7 to prove that lim — = 0.
x—x X
SOLUTION
1. Preliminary analysis of the problem (guessing a value for N). Given g > 0, we
want to find N such that

1
—— 0| <es whenever x>N

X

In computing the limit we may assume x > 0, in which case

Therefore, we want

1
—<g whenever x> N
X

) 1
that is, x> — whenever x>N
€

This suggests that we should take N = 1/s.

2. Proof (showing that this N works). Given ¢ > 0, we choose N = 1/¢. Let x > N.
Then

1 1
=— ==X
X

=g
||

1
N

1
—— 0| <e whenever x>N

X

Thus
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Therefore, by Definition 7,

1
lim—=20

x—0e X

Figure 18 illustrates the proof by showing some values of € and the corresponding valucs
of N.

FIGURE 18

Finally we note that an infinite limit at infinity can be defined as follows. The geomet-
ric illustration is given in Figure 19.

Definition Let f be a function defined on some interval {a, ). Then

lim f(x) = o

means that for every positive number M there is a corresponding positive number
N such that

FIGURE 19 \———’f(ﬂ> M whenever x>N
lim f(x)= o »

x—@

Similar definitions apply when the symbol o is replaced by —«. (See Exercise 66.)

jL]l 2.6 Exercises

1. Explain in your own words the meaning of each of the (f) The equations of the asymptotes
following.
. . ¥
(a) lim f(x) =5 (b) lim f(x) =3 [ ‘ L T J ‘
o = B T / \
2. (a) Can the graph of y = f(x) intersect a vertical asymptote? N / .
Can it intersect a horizontal asymptote? Ilustrate by 7N I
sketching graphs. \
(b) How many horizontal asymptotes can the graph of y = f(x) T 1 L
have? ‘Sketch graphs to illustrate the possibilities. l L E
3. For the function f whose graph is given, state the following. 7_L ( J \

(a) lim £(x) ®) lim f(x) (o) lim f(x)

4. For the function g whose graph is given, state the following.
(d) lim f(x) (e) lim f(x) (a) lim g(x) () lim g(x)
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SRR g(x) (d) lmé g(x) 13-34 i Find the limit.
cer Hm g(x) (f) The equations of the asymptotes 13. lim 14. lim x+5
N S8 2%+ 3 o x— 4
1—-x—x° C 2 = 3y?
Y 15, lim ————— 16. lim ———
/ \\ ot 2x? = 7 o 5y% + dy
/ ~ x* + 5x 2 +2
lim —————— 18. lim —————
1 7 11—130 2% —x* + 4 i P+ -1
/ e 4ut + 5 X+ 2
19. lim————5—— 20. lim ———
x [ 1A/ e S YY) o 1
T
f \/ I \ / : 9x6 — x Ox6 — x
T 1. tim L 2. fim X
e x0 1 s X3+ 1
23, lim (v9x% + x — 3x) 24. lim (x + /x2 + 2x)
% % - Sketch the graph of an example of a function f that = =
srfies al| of the given conditions. 25. lim (VX +ax — /x* + bx) 26. lim cos x
2 o0 =0, f(1)=1, }E?cf(x) =0, fisodd 27. lim /x 28. lim ¥x
() = T - ; — x*—2x+3
& S = lim f() =~ lim fl) =1, 2. lim (x — V) 30. lim =
P x> x> x—% x—0 5 - 2 C
: b f(x) =1 X
: o 31 lim (x* + x°) 32. lim tan™'(x? — x*)
1 . x——w x—®
} 2. b f(x) = —oo, lim f(x) =, lim f(x) =0, TR
.o x—00 x——00 . . tan x
iy f(x) =, lim f(x) = oo 3. lim . lim e

a o o o a ° a El a a o a

8 tm () =, lim f(x)=3, limf(x)=-3 _
t o o A 35. (a) Estimate the value of

S lim (VX F T+ )
% Ciucss the value of the limit
, by graphing the function f(x) = x>+ x + 1 + x.
lim x (b) Use a table of values of f(x) to guess the value of the limit.
x—e 25 (¢) Prove that your guess is correct.

A
: by cevaluating the function f(x) = x%/2*forx =0, 1, 2,3,4,5, 36. (2) Use a graph of

) 6.7.8,9, 10, 20, 50, and 100. Then use a graph of f to support F)=/3x2+ 8x + 6 — /3x2 + 3x + 1
| YOUr guess.
to estimate the value of lim .. f(x) to one decimal place.
#. 1) Use a graph of (b) Use a table of values of f(x) to estimate the limit to four
decimal places.
) = (1 . E)x (c) Find the exact value of the limit.

37-42 w Find the horizontal and vertical asymptotes of each

to estimate the value of lim, ... f(x) correct to two decimal curve. Check your work by graphing the curve and estimating the

places. asymptotes.
tb) Use a table of values of f(x) to estimate the limit to four X x2+4
decimal places. 3. y= T+ 4 38. y= -1
¢ 12 w Evaluate the limit and justify each step by indicating the 39. y = x? 40. y = X1
wpropriate properties of limits. x*+3x~ 10 Ptx

3x* —x+4

_ [12%° — 5x + 2 x x—9
H, lim —————— 12, 1i _— . = —— . =
Jm 2%+ 5x — 8 fatd 1+ 4x% + 3x° a1 A(x) {‘/x“——i—l 2. F® JAx? +3x + 2

o a o o o o [} o ° =) o a o a o a o [} o a ° a
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43. Find a formula for a function f that satisfies the following
conditions:
lim f() =0, limf() =~ f(2)=0,

lim () =, lim f(x) =~

44, Find a formula for a function that has vertical asymptotes
x = 1 and x = 3 and horizontal asymptote y = 1.

45-48 i Find the limits as x — % and as x — —oo. Use this
information, together with intercepts, to give a rough sketch of
the graph as in Example 11.

45. y = x2x — 2)(1 - x)
6. y = (2 + x’(1 — 03 — %)
47. y = (x + 4Y(x — 3)°

48. y = (1 — x)(x — 3)%(x — 57

a o 0 o o o ) a a a o 0

49, (a) Use the Squeeze Theorem to evaluate lim S

x—® X

T (b) Graph f(x) = (sin x)/x. How many times does the graph
cross the asymptote?

50. By the end behavior of a function we mean the behavior of its
values as x —> % and as x —> —.
(a) Describe and compare the end behavior of the functions

P(x) = 3x° — 5x + 2x O(x) = 3x°

by graphing both functions in the viewing rectangles
[-2,2] by [—2, 2] and [-10, 10] by [—10,000, 10,000].

(b) Two functions are said to have the same end behavior if
their ratio approaches 1 as x — . Show that P and Q have
the same end behavior.

51 Let P and Q be polynomials. Find

lim P(x)
= 000

if the degree of P is (a) less than the degree of Q and
(b) greater than the degree of Q.

52. Make a rough sketch of the curve y = x” (n an integer) for the
following five cases:

i n=0
@iil) n > 0, n even
(v) n<0,neven
Then use these sketches to find the following limits.
o Jig

(i) n >0, nodd
(iv) n <0, nodd

a) lim x" :
( )x—>01L

(¢) lim x"

x—>w0

(d lim x

3.

54.

55.

A 59.

60.

Find lim,—« f(x) if
4x — 1 4x? + 3x

<flx) < >
X

for all x > 5.

(a) A tank contains 5000 L of pure water. Brine that contains
30 g of salt per liter of water is pumped into the tank at a
rate of 25 L/min. Show that the concentration of salt after
¢ minutes (in grams per liter) is

30t

e = 200 + ¢

(b) What happens to the concentration as t — 7?7

In Chapter 9 we will be able to show, under certain assump-
tions, that the velocity v(¢) of a falling raindrop at time ¢ is

v(t) = v¥(1 — e 79")

where ¢ is the acceleration due to gravity and v* is the terminal 3
velocity of the raindrop.
(a) Find lim,—« v(?).
(b) Graph »(¢) if v¥ = 1 m/s and g = 9.8 m/s’. How long does
it take for the velocity of the raindrop to reach 99% of its
terminal velocity?

. (a) By graphing y = ¢ '® and y = 0.1 on a common screen,

discover how large you need to make x so that e ™/'% < 0.1,
(b) Can you solve part (a) without using a graphing device?

. Use a graph to find a number N such that

6x2+5x—3

3 < 0.2 whenever x>N
2x -1

-3

For the limit
4x2 + 1

lm—————=2
x> x+1

illustrate Definition 7 by finding values of N that correspond to
e=05ande = 0.1.
For the limit

4x2 + 1

lim ——————= -2
x—-w x4+ 1

illustrate Definition 8 by finding values of N that correspond to
e =0.5and e = 0.1.

For the limit

i 2x+1 w

e vx+1
illustrate Definition 9 by finding a value of N that corresponds
to M = 100.
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# . How large do we have to take x so that 1/x? < 0.0001? 65. Use Definition 9 to prove that
%+ Fuking r = 2 in Theorem 5, we have the statement lim e =
im e* =
x—w X 66. Formulate a precise definition of
frove this directly using Definition 7. lim f(x) = —o

#b 2 How large do we have to take x so that 1/4/x < 0.00012

.+ Taking r = 3 in Theorem 5, we have the statement Then use your definition to prove that

) lim (1 + x*) = —o
lim —==0 e
s x 67. Prove that
Prove this directly using Definition 7. lim f(x) = lim f(1/9
x>0 t—0*
X e .1
- %k e Definition 8 to prove that lim — = 0. and lim f(x) = lim f(1/9)
x——0 X x—>— —0-
# #+we, using Definition 9, that lim x* = o, . if these limits exist.

x—w

2.7 Tanoents, Velocities, and Ofher Rates of Change

In Section 2.1 we guessed the values of slopes of tangent lines and velocities on the basis
of numerical evidence. Now that we have defined limits and have learned techniques for
computing them, we return to the tangent and velocity problems with the ability to calcu-
late slopes of tangents, velocities, and other rates of change.

|||| Tangents

If a curve C has equation y = f(x) and we want to find the tangent line to C at the point
P(a, f(a)), then we consider a nearby point Q(x, f(x)), where x #* a, and compute the slope
of the secant line PQ:

_ &) ~ fla)
Mpg =

x—a
Then we let Q approach P along the curve C by letting x approach a. If mpg approaches a
number m, then we define the tangent t to be the line through P with slope m. (This
amounts to saying that the tangent line is the limiting position of the secant line PQ as Q
approaches P. See Figure 1.)

HGURE 1




