37. The figure shows the graphs of y = sin 96x and y = sin 2x as
displayed by a TI-83 graphing calculator.

AN AN ANAE
VARV AN EAVARY

y =sin96x y=sin2x

The first graph is inaccurate. Explain why the two graphs
appear identical. [Hint: The TI-83's graphing window is 95
pixels wide. What specific points does the calculator plot?]

38. The first graph in the figure is that of y = sin 45x as displayed
by a TI-83 graphing calculator. It is inaccurate and so, to help

1.5 Exponential Functions

0 27 ol_ -~ 'rw
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explain its appearance, we replot the curve in dot mode in the
second graph.

What two sine curves does the calculator appear to be

plotting? Show that each point on the graph of y = sin 45 that
the TI-83 chooses to plot is in fact on one of these two curves.
(The TI-83s graphing window is 95 pixels wide.)

The function f{x) = 2" is called an exponential function because the variable, x, is the
exponent. It should not be confused with the power function g(x) = x2, in which the vari-

able is the base.

In general, an exponential function is a function of the form

) =a*

where a is a positive constant. Let’s recall what this means.
If x = n, a positive integer, then

n factors

If x =0, then ¢’ = 1, and if x = —n, where n is a positive integer, then

If x is a rational number, x = p/q, where p and q are integers and ¢ > 0, then

1 H 2¥3 or 577

a*t = ap/q = an = (%)p
But what is the meaning of ¢ if x is an irrational number? For instance, what is meant by

To help us answer this question we first look at the graph of the function y = 27, where
. x is rational. A representation of this graph is shown in Figure 1. We want to enlarge the
L7 domain of y = 2* to include both rational and irrational numbers.
. There are holes in the graph in Figure 1 corresponding to irrational values of x. We want
L x to fill in the holes by defining f(x) = 2*, where x € R, so that f is an increasing function.

In particular, since the irrational number /3 satisfies

FIGURE 1
Representation of y = 27, x rational

17<J/3< 18
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we must have
21 < 2¥8 < 18

and we know what 2'7 and 2'® mean because 1.7 and 1.8 are rational numbers. Similarly,
if we use better approximations for /3, we obtain better approximations for 2¥°:

1L73< /3 < 1.74 > 2B ggn
1732 <3< 1733 = 272 <2 <t
17320 < /3 < 17321 > 21P0 < 23 < 17
173205 < /3 < 1.73206 = 217905 < 2V3 < Q173206

il A proof of this fact is given in J. Marsden It can be shown that there is exactly one number that is greater than all of the numbers
and A. Weinstein, Calculus Unlimited {Menlo
Park, CA: Benjamin/Cummings, 1980). L7 9 LT3 QL2 LTI LT30S

y

and less than all of the numbers
21.8 2L74 21.733 21.7321 21.73206

+ We define 2V to be this number. Using the preceding approximation process we can com-
pute it correct to six decimal places:

L
/ — 2¥3 ~ 3321997

0

Similarly, we can define 2* (or a*, if a > 0) where x is any irrational number. Figure 2
”GUEE 2 shows how all the holes in Figure | have been filled to complete the graph of the function
y=2,xreal f(x)=2",xE[R.
The graphs of members of the family of functions y = a* are shown in Figure 3 for var-
ious values of the base a. Notice that all of these graphs pass through the same point (0, 1)
because a’ = 1 for a # 0. Notice also that as the base a gets larger, the exponential func-
tion grows more rapidly (for x > 0).

15"

i 1f 0 < a < 1, then a* approaches 0 as x
becomes large. If @ > 1, then a* approaches 0
as x decreases through negative values. In both
cases the x-axis is a horizontal asymptote.
These matters are discussed in Section 2.6.

FIGURE 3

You can see from Figure 3 that there are basically three kinds of exponential functions
y=a". If 0 < a < 1, the exponential function decreases; if a = 1, it is a constant; and if
a > 1, it increases. These three cases are illustrated in Figure 4. Observe that if a # 1,
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then the exponential function y = a* has domain R and range (0, ). Notice also that,
since (1/a)* = 1/a* = a™*, the graph of y = (1/a)" is just the reflection of the graph of
y = a” about the y-axis.

y y y
o1 1
\ / o.b
0 x 0 x 0 x
(@y=a’, 0<a<l byy=1¢ C)y=a*‘, a>1
FIGURE 4
One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary
algebra. It can be proved that they remain true for arbitrary real numbers x and y.
Il In Section 5.6 we will present a definition Laws of Exponents If ¢ and b are positive numbers and x and y are any real numbers,
f the exponential function that will enable us then
0 give an easy proof of the Laws of Exponents. &
1L @™ = a'w 207 =2 3. (@) = a” 4. (ab)" = a'b*
a

EXAMPLE 1 Sketch the graph of the function y = 3 — 2 and determine its domain and

range.
il For a review of reflecting and shifting SOLUTION First we reflect the graph of y = 2* (shown in Figure 2) about the x-axis to
raphs, see Section 1.3. get the graph of y = —2* in Figure 5(b). Then we shift the graph of y = —2* upward
3 units to obtain the graph of y = 3 — 2* in Figure 5(c). The domain is R and the range
is (—o, 3).
¥4 ¥4 y
i_*__y—zﬁ
2

j
0 x \0 X 0 x

—1

FIGURE 5 (@)y=2" () y=-2* (©)y=3-2° ki

EXAMPLE 2 Use a graphing device to compare the exponential function f(x) = 2* and the
power function g(x) = x* Which function grows more quickly when x is large?

SOLUTION Figure 6 shows both functions graphed in the viewing rectangle [ -2, 6]
by [0, 40]. We see that the graphs intersect three times, but for x > 4 the graph of
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Il Example 2 shows that y = 2 increases
more quickly than y = x*. To demonstrate just
how quickly f(x) = 27 increases, let's perform
the following thought experiment. Suppose we
start with a piece of paper a thousandth of an
inch thick and we fold it in haif 50 times. Each
time we fold the paper in half, the thickness of
the paper doubles, so the thickness of the
resulting paper would be 2°%/ 1000 inches. How
thick do you think that is? It works out to be
more than 17 million miles!

TABLE 1

Population
Year (millions)
1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080

f(x) = 2~ stays above the graph of g(x) = x* Figure 7 gives a more global view and
shows that for large values of x, the exponential function y = 2* grows far more rapidly
than the power function y = x*.

40 250
y:2.r y=x2
-2 < 6 0
FIGURE 6 FIGURE 7 i

”” Applications of Exponential Functians

The exponential function occurs very frequently in mathematical models of nature and
society. Here we indicate briefly how it arises in the description of population growth
and radioactive decay. In later chapters we will pursue these and other applications in
greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose
that by sampling the population at certain intervals it is determined that the population
doubles every hour. If the number of bacteria at time ¢ is p(r), where ¢ is measured in hours,
and the initial population is p(0) = 1000, then we have

p(1) = 2p{0) = 2 X 1000

p(2) = 2p(1) = 2% X 1000

p(3) = 2p(2) = 2° X 1000
It seems from this pattern that, in general, )

p(r) = 2 X 1000 = (1000)2°

This population function is a constant multiple of the exponential function y = 2/, so it
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions
(unlimited space and nutrition and freedom from disease) this exponential growth is typi-
cal of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world
in the 20th century and Figure 8 shows the corresponding scatter plot.

P

6X10°T *

1900 1920 1940 1960 1980 2000 !

FIGURE 8 Scatter plot for world population growth




FIGURE 9
Exponential model for
population growth
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The pattern of the data points in Figure 8 suggests exponential growth, so we use a
graphing calculator with exponential regression capability to apply the method of least
squares and obtain the exponential model

= (0.008079266) - (1.013731)

Figure 9 shows the graph of this exponential function together with the original data
points. We see that the exponential curve fits the data reasonably well. The period of rela-
tively slow population growth is explained by the two world wars and the Great Depres-
sion of the 1930s.

6X10° T

900 1920 1940 1960 1980 2000 ‘

EXAMPLE 3 The half-life of strontium-90, *Sr, is 25 years. This means that half of any
given quantity of *Sr will disintegrate in 25 years.

(a) If a sample of *°Sr has a mass of 24 mg, find an expression for the mass m(t) that
remains after ¢ years.

(b) Find the mass remaining after 40 years, correct to the nearest milligram.

(c) Use a graphing device to graph m(z) and use the graph to estimate the time required
for the mass to be reduced to 5 mg.

SOLUTION
(a) The mass is initially 24 mg and is halved during each 25-year period, so
m(0) = 24
('25 l ~(24)
m =
2
1 1 |
50)=—-—=@4) = (24
m(50) = = —(4) = 55(24)
(75) = & 2 (24) = 55 (24
m 2 2 23

1 1
m(100) = — - —5(24) = —(24)
From this pattern, it appears that the mass remaining after ¢ years is

m(t) = 2,/,5 —=((24)=24-27%

This is an exponential function with base @ = 27V/% = 1/2/%

[N
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FIGURE 10

7

e

FIGURE 13
The natural exponential function
crosses the y-axis with a slope of 1.

(b) The mass that remains after 40 years is

m(40) = 24 - 2795 ~ 79 mg

(c) We use a graphing calculator or computer to graph the function m(f) = 24 - 277% in
Figure 10. We also graph the line m = 5 and use the cursor to estimate that m(f) = 5
when t =~ 57. So the mass of the sample will be reduced to 5 mg after about 57 years.
30
100 g

|||| The Number e

Of all possible bases for an exponential function, there is one that is most convenient for
the purposes of calculus. The choice of a base a is influenced by the way the graph of
y = a“* crosses the y-axis. Figures 11 and 12 show the tangent lines to the graphs of y = 2*
and y = 3% at the point (0, 1). (Tangent lines will be defined precisely in Section 2.7. For
present purposes, you can think of the tangent line to an exponential graph at a point as the
line that touches the graph only at that point.) If we measure the slopes of these tangent
lines at (0, 1), we find that m = 0.7 for y = 2*and m ~ [.1 for y = 3%

FIGURE 11 FIGURE 12

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be
greatly simplified if we choose the base a so that the slope of the tangent line to y = a* at
(0, 1} is exactly 1 (see Figure 13). In fact, there is such a number (as we will see in Sec-
tion 5.6) and it is denoted by the letter e. (This notation was chosen by the Swiss mathe-
matician Leonhard Euler in 1727, probably because it is the first letter of the word
exponential.) In view of Figures 11 and 12, it comes as no surprise that the number e lies
between 2 and 3 and the graph of y = e* lies between the graphs of y = 2*and y = 3*. (See
Figure 14.) In Chapter 3 we will see that the value of e, correct to five decimal places, is

e =~ 271828
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Module 1.5 enables you to graph expo-
nential functions with various bases
and their tangent lines in order to esti-

mate more closely the value of a for which the
tangent has siope 1.

FIGURE 14

EXAMPLE 4 Graph the function y = ¢~ — 1 and state the domain and range.

SOLUTION We start with the graph of y = ¢* from Figures 13 and 15(a) and reflect about
the y-axis to get the graph of y = ¢™" in Figure 15(b). (Notice that the graph crosses the
y-axis with a slope of —1). Then we compress the graph vertically by a factor of 2 to
obtain the graph of y = $¢* in Figure 15(c). Finally, we shift the graph downward one
unit to get the desired graph in Figure 15(d). The domain is R and the range is (=1, ).

y ¥ \ y y

0 X 0 x 0 X of . X

(a)y=e* byy=e>* ©y=1e (dy=1e*—1
FIGURE 15 i

How far to the right do you think we would have to go for the height of the graph of
y = e” to exceed a million? The next example demonstrates the rapid growth of this func-
tion by providing an answer that might surprise you.

EXAMPLE 5 Use a graphing device to find the values of x for which ¢* > 1,000,000.

SOLUTION In Figure 16 we graph both the function y = e” and the horizontal line

y =1,000,000. We see that these curves intersect when x = 13.8. Thus, ¢* > 10® when
x > 13.8. It is perhaps surprising that the values of the exponential function have already
surpassed a million when x is only 14.

1.5 x10°

FIGURE 16 0
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Il 1.5_Exersises

1. (a) Write an equation that defines the exponential function with 17-18 1 Find the exponential function f(x) = Ca* whose graph is
base a > 0. given._ -
(b) What is the domain of this function? i1 4 18.
(c) If a # 1, what is the range of this function? o
(d) Sketch the general shape of the graph of the exponential .24 S

function for each of the following cases.

@ a>1 (i) a =1 (iii) 0 <a <1
2. (a) How is the number e defined? L.6)
(b) What is an approximate value for e? T
(c) What is the natural exponential function? 0 x 0 X
A 3-6 m Graph the given functions on a common screen. How are
these graphs related? ’ ’ : ° : : : ’ ) ° ° :
y=2% y=e' y=5, y=20 19. If f(x) = 5%, show that
4. y a— e.\:, y — e—.r, y —_— 8.(, y = 8_."
By=3% y=10% y=0) y=() fe+h) = fO) _ 5,((5" - 1)
h h

6. y=09%, y=067 y=03 y=0.1"

a o a o a o a a o o o o

20. Suppose you are offered a job that lasts one month. Which of
the following methods of payment do you prefer?

7~12 i Make a rough sketch of the graph of the function. Do not L One million dollars at the end of the month.

use a calculator. Just use the graphs given in Figures 3 and 14 and, II. One cent on the first day of the month, two cents on the

if necessary, the transformations of Section 1.3. second day, four cents on the third day, and, in general,
7.y=4-3 8. y=14"3 2"~ cents on the nth day.

9oy=-27 0. y=1+2e 21. Suppose the graphs of f(x) = x” and g(x) = 2* are drawn on a

JEv=3-¢" 122 y=2+5(1-¢7) coordinate grid where the unit of measurement is 1 inch. Show

that, at a distance 2 ft to the right of the origin, the height of
the graph of f is 48 ft but the height of the graph of g is about

o a a a a o a a o a a a

13. Starting with the graph of y = e*, write the equation of the 265 mi.
graph that results from i
(a) shifting 2 units downward 22. Compare the functions f(x) = x> and g(x) = 5* by graphing
(b) shifting 2 units to the right both functions in several viewing rectangles. Find all points of

intersection of the graphs correct to one decimal place. Which

(c) reflecting about the x-axis
function grows more rapidly when x is large?

(d) reflecting about the y-axis

(e) reflecting about the x-axis and then about the y-axis
23: Compare the functions f(x) = x'® and g(x) = e* by graphing

14. Starting with the graph of y = e, find the equation of the both f and g in several viewing rectangles. When does the
graph that results from . graph of g finally surpass the graph of f?
(a) reflecting about the line y = 4 :
(b) reflecting about the line x = 2 24. Use a graph to estimate the values of x such that

e* > 1,000,000,000.
15-16 mt Find the domain of each function.

1 25. Under ideal conditions a certain bacteria population is known
15. (@) flx) = L+ o b) fx) = | = & to double every three hours. Suppose that there are initially 100
bacteria.
16. (a) g(t) = sin(e™) (b) g(0) = VI =2 (a) What is the size of the population after 15 hours?

- s o o a o o o a a s R (b) What is the size of the population after ¢ hours?




!
LR

26.

4

27.

(c) Estimate the size of the population after 20 hours.
(d) Graph the population function and estimate the time for the
population to reach 50,000.

An isotope of sodium, *Na, has a half-life of 15 hours. A

sample of this isotope has mass 2 g.

(a) Find the amont remaining after 60 hours.

(b) Find the amount remaining after ¢ hours.

(c) Estimate the amount remaining after 4 days.

(d) Use a graph to estimate the time required for the mass to be
reduced t0 0.0! g.

Use a graphing calculator with exponential regression capa-
bility to model the population of the world with the data from
1950 to 2000 in Table | on page 58. Use the model to estimate
the population in 1993 and to predict the population in the
year 2010.
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28. The table gives the population of the United States, in millions,

for the years 1900-2000.

Year Population Year Population
1900 76 1960 179
1910 92 1970 203
1920 106 1980 227
1930 123 1990 250
1940 131 2000 281
1950 150

Use a graphing calculator with exponential regression capabil-
ity to model the U.S. population since 1900. Use the model to
estimate the population in 1925 and to predict the population in
the years 2010 and 2020.

jﬂlll 1.6 Inverse Functions and Logarithms

FIGURE 1

Table 1 gives data from an experiment in which a bacteria cuiture started with 100 bacte-
ria in a limited nutrient medium; the size of the bacteria population was recorded at hourly
intervals. The number of bacteria N is a function of the time ¢: N = f(t).»_,_

Suppose, however, that the biologist changes her point of view and becomes interested
in the time required for the population to reach various levels. In other words, she is think-
ing of ¢ as a function of N. This function is called the inverse function of f, denoted by f~*,
and read “finverse.” Thus, t = f ~'(N) is the time required for the population level to reach
N. The values of f ' can be found by reading Table | from right to left or by consulting
Table 2. For instance, £ ~'(550) = 6 because f(6) = 550.

TABLE 1 N as a function of ¢ TABLE 2 :as a function of N
£ N =f() t=f'(V)
(hours) = population at time ¢ N = time to reach N bacteria

0 100 100 0

1 168 168 i

2 259 259 2

3 358 358 3

4 445 445 4

5 509 509 5

6 550 550 6

7 573 573 7

8 586 586 8

L

Not all functions possess inverses. Let’s compare the functions f and g whose arrow
diagrams are shown in Figure I.

Note that f never takes on the same value twice (any two inputs in A have different out-
puts), whereas g does take on the same value twice (both 2 and 3 have the same output, 4).
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i in the language of inputs and outputs, this
definition says that £ is one-to-one if each out-
put corresponds to only one input.

|
|
flx) Flxa) :
]
|
!

b\

FIGURE 2
This function is not one-to-one
because f(x,) = f(x,).

YA /
J=

e

/

FIGURE 3
f(x)= x> is one-to-one.

\ T e
\ |/

FIGURE 4
g(x) = x? is not one-to-one.

In symbols,
g9(2) = 4¢(3)

but Flx) # fx,) whenever x, # x,

Functions that have this property are called one-to-one functions.

Definition A function f is called a one-to-one function if it never takes on the
same value twice; that is,

Fx) # fx,) whenever x, # x,

If a horizontal line intersects the graph of f in more than one point, then we see from
Figure 2 that there are numbers x, and x, such that f(x,) = f(x,). This means that f is not
one-to-one. Therefore, we have the following geometric method for determining whether
a function is one-to-one.

Horizontal Line Test A function is one-to-one if and only if no horizontal line inter-
sects its graph more than once.

EXAMPLE 1 s the function f(x) = x* one-to-one?

SOLUTION 1 If x, # x,, then x7 # x3 (two different numbers can’t have the same cube).
Therefore, by Definition 1, f(x) = x> is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of f(x) = x*
more than once. Therefore, by the Horizontal Line Test, f is one-to-one. st

EXAMPLE 2 [s the function g(x) = x? one-to-one?

SOLUTION 1 This function is not one-to-one because, for instance,
g(1) =1 =g(—1)

and so | and —1 have the same output.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the graph of
g more than once. Therefore, by the Horizontal Line Test, g is not one-to-one. ks

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

Definition Let f be a one-to-one function with domain A and range B. Then its
inverse function f ' has domain B and range A and is defined by

i) =x < f)=y

for any y in B.
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This definition says that if f maps x into y, then f~! maps y back into x. (If f were not

A . . P C -
. one-to-one, then f~' would not be uniquely defined.) The arrow diagram in Figure 5 indi-
f ! cates that f ™' reverses the effect of f. Note that -
B
y
FIGURE 5 domain of f~' = range of f
range of f~! = domain of f

For example, the inverse function of f(x) = x> is f~'(x) = x'/? because if y = x°, then
M=) ="’ =x
@ CAUTION = Do not mistake the —1 in f~! for an exponent. Thus

FY(x) does not mean

L
fx)
The reciprocal 1/f(x) could, however, be written as [ f(x)]~%.

EXAMPLE 3 If f(1) = 5, f(3) = 7, and f(8) = —10, find £~'(7), £~(5), and f~'(~10).
SOLUTION From the definition of f~' we have

FimH=3 because f@) =17
FU5) =1  because  f(1) =35

fi(—10)=8 because f(8 =—10
The diagram in Figure 6 makes it clear how f ' reverses the effect of f in this case. s

The letter x is traditionally used as the independent variable, so when we concentrate
on f~! rather than on f, we usually reverse the roles of x and y in Definition 2 and write

ffll =y < fO)=x

FIGURE 6
The inverse function reverses
inputs and outputs.

By substituting for y in Definition 2 and substituting for x in (3), we get the following
cancellation equations:

FU(f(x)) = x forevery xin A

f(f'(x)) =x forevery xinB
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The first cancellation equation says that if we start with x, apply f, and then apply f~!, we
arrive back at x, where we started (see the machine diagram in Figure 7). Thus, f ' undoes
what f does. The second equation says that f undoes what f " does.

FIGURE 7

For example, if f(x) = x°, then £ ~!(x) = x'/* and so the cancellation equations become

FHO) = )P =x
FUT0) = () =«

These equations simply say that the cube function and the cube root function cancel each
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y = f(x) and are
able to solve this equation for x in terms of y, then according to Definition 2 we must have
x = f~!(y). If we want to call the independent variable x, we then interchange x and y and
arrive at the equation y = f ~'(x).

How to Find the lnverse Function of a One-fo-One Function £
STEP 1 Write y = f(x).
STEP 2 Solve this equation for x in terms of y (if possible).

STEP 3 To express f ' as a function of x, interchange x and y.
The resulting equation is y = £~ '(x).

EXAMPLE 4 Find the inverse function of f(x) = x> + 2.

SOLUTION According to (5) we first write

y= 242
Then we solve this equation for x:
=y-2
x=iy—2

Finally, we interchange x and y:

3
=Jx -2
1l In Example 4, notice how £ ! reverses the Y
effect of f. The function f is the rule “Cube,
then add 2; £~V is the rule "Subtract 2, then Therefore, the inverse function is f ~!(x) = ¥/x — 2. i

take the cube root.”

The principle of interchanging x and y to find the inverse function also gives us the
method for obtaining the graph of ' from the graph of f. Since f(a) = b if and only if
£71(b) = a, the point (a, b) is on the graph of f if and only if the point (b, @) is on the
graph of £~!. But we get the point (b, a) from (a, b) by reflecting about the line y = x. (See
Figure 8.)




SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS Il 67

Y4 b, a) YA

/ f

/
/ _ Y (a.b)
/ - |
0/~ A N 0 N
x 1 x
y=x y=ux B f

FIGURE 8 FIGURE 9

Therefore, as illustrated by Figure 9:

The graph of f ™' is obtained by reflecting the graph of f about the line y = x.

y=x
\ 0 EXAMPLE 5 Sketch the graphs of f(x) = +/—1 — x and its inverse function using the

—1,0 0.-1) x  same coordinate axes.
SOLUTION First we sketch the curve y = +/—1 — x (the top half of the parabola
=0 y? = —1 — x,or x = —y? — 1) and then we reflect about the line y = x to get the

graph of f~'. (See Figure 10.) As a check on our graph, notice that the expression for
flis £74(x) = —x? — 1, x = 0. So the graph of f ! is the right half of the parabola
FIGURE 10 y= —x% — 1 and this secms reasonable from Figure 10. R

lll| _Losarithmic Functions

If a > 0 and a # 1, the exponential function f(x) = a* is either increasing or decreasing
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function f -t
which is called the logarithmic function with base a and is denoted by log,. If we use the
formulation of an inverse function given by (3),

=y < fO)=x
then we have

log,x=y < a’=x

Thus, if x > 0, then log , x is the exponent to which the base a must be raised to give x. For
example, log,,0.001 = —3 because 107> = 0.001.

The cancellation equations (4), when applied to the functions f(x) =a* and
f7(x) = log,x, become

log(a®) = x foreveryx € R

a* =x foreveryx >0

The logarithmic function log, has domain (0, ) and range R. Its graph is the reflection
of the graph of y = a* about the line y = x.
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y y=x
0 x
y=log,x, a>1

FIGURE 11

FIGURE 12

{1 NOTATION FOR LOGARITHMS

Most textbooks in calculus and the sciences,
as well as calculators, use the Rotation In x for
the natural logarithm and log x for the “com-
mon logarithm,” log e .x. in the more advanced
mathematical and scientific literature and in
computer anguages, however, the notation
log x usually denotes the natural logarithm.

Figure 11 shows the case where a > 1. (The most important logarithmic functions have
base a > 1.) The fact that y = a* is a very rapidly increasing function for x > 0 is
reflected in the fact that y = log_x is a very slowly increasing function for x > 1.

Figure 12 shows the graphs of y = log x with various values of the base a. Since
log, 1 = 0, the graphs of all logarithmic functions pass through the point (1, 0).

The following properties of logarithmic functions follow from the corresponding prop-
erties of exponential functions given in Section 1.5.

Laws of Logarithms If x and y are positive numbers, then

1. log,(xy) = log,x + log,y

2 loga(i) = log,x — log,y
y

3. log(x") = rlog,x (where r is any real number) J

EXAMPLE 6 Use the laws of logarithms to evaluate log, 80 — log,5.
SOLYTION Using Law 2, we have

80
log, 80 — log,5 = log2(~5—> =log,l6 =4
because 2*¢ = 16. » e

I _Hatural Logarithms

Of all possible bases a for logarithms, we will see in Chapter 3 that the most convenient
choice of a base is the number e, which was defined in Section 1.5. The logarithm with
base e is called the natural logarithm and has a special notation:

log,x=Inx

If we put a = e and replace log, with “In” in (6) and (7), then the defining properties
of the natural logarithm function become

lnx=y <& e =x

In(e*) = x xER

el = x x>0

In particular, if we set x = 1, we get

e
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EXAMPLE 7 Find x if In x = 5.
SOLUTION 1 From (8) we see that
Inx=25 means e’ =x

Therefore, x = e°.

(If you have trouble working with the “In” notation, just replace it by log,. Then the
equation becomes log,x = 5; so, by the definition of logarithm, e’ =1x)

SOLUTION 2 Start with the equation
Inx =35

and apply the exponential function to both sides of the equation:

But the second cancellation equation in (9) says that e™* = x. Therefore, x = €.  aiui

EXAMPLE 8 Solve the equation ¢’ = 10.
SOLUTION We take natural logarithms of both sides of the equation and use (9):

In(¢>™*) =1n 10

5—3x=1In10
3x=5—-—1In10
x =735~ In 10)

Since the natural logarithm is found on scientific calculators, we can approximate the
solution to four decimal places: x =~ 0.8991. i

EXAMPLE 9 Express Ina + 1 1nb as a single logarithm.
SOLUTION Using Laws 3 and 1 of logarithms, we have

Ina +3lnb =Ina + Inb"?
=lna + ln\/E
=ln(a\/[;) i

The following formula shows that logarithms with any base can be expressed in terms
of the natural logarithm.

10| Change of Base Formula For any positive number a (a # 1), we have

In x
log,x = —
Ina
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Proof Lety = log,x. Then, from (6), we have a” = x. Taking natural logarithms of both
sides of this equation, we get y In @ = In x. Therefore

Ina -

Scientific calculators have a key for natural logarithms, so Formula 10 enables us to use
a calculator to compute a logarithm with any base (as shown in the next example). Simi-
larly, Formula 10 allows us to graph any logarithmic function on a graphing calculator or
computer (see Exercises 43 and 44).

EXAMPLE 10 Evaluate logg 5 correct to six decimal places.

SOLUTION Formula 10 gives

In5
logy5 = — = 0.773976
%8> " nsg sl

EXAMPLE 11 In Example 3 in Section 1.5 we showed that the mass of *’Sr that remains
from a 24-mg sample after ¢ years is m = f{(¢) = 24 - 27 Find the inverse of this
function and interpret it.

SOLUTION We need to solve the equation m = 24 - 27/% for t. We start by isolating the e
exponential and taking natural iogarithms of both sides:

2725 — m

24

. m
In(2=7%) = —
n(277%) 1n(24)

t
~Eln2 =Inm—1In24

25 25
t 2 (Inm — In 24) n2 (In24 — Inm)

So the inverse function is

fm) = %(ln 24 — Inm)

’ . This function gives the time required for the mass to decay to m milligrams. In particu-
y=e . lar, the time required for the mass to be reduced to 5 mg is
i 25
t=f"15 = ﬁ(ln 24 — In5) = 56.58 years
n
/ y=lnx . . . .
0 This answer agrees with the graphical estimate that we made in Example 3 in
1 x Section 1.5. il
The graphs of the exponential function y = ¢* and its inverse function, the natural log-

arithm function, are shown in Figure 13. Because the curve y = e* crosses the y-axis with  F,

FIGURE 13 a slope of 1, it follows that the reflected curve y = ln .x crosses the x-axis with a slope of 1.
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In common with all other logarithmic functions with base greater than 1, the natural
logarithm is an increasing function defined on (0, «) and the y-axis is a vertical asymptote.
(This means that the values of ln x become very large negative as x approaches 0.)

EXAMPLE 12 Sketch the graph of the function y = In(x — 2) — 1.

SOLUTION We start with the graph of y = In x as given in Figure 13. Using the transforma-
tions of Section 1.3, we shift it 2 units to the right to get the graph of y = In{x — 2) and
then we shift it 1 unit downward to get the graph of y = In(x — 2) — 1. (See Figure 14.)

y y jx=2 ¥ |x=2
I |
1 | |
y=Ilnx i =lIn{x—2)—1
Jl y=In(x—2) { 4 ) )
|
. i
0 (1,0) X 0 2: (3,0) X 0 2| X
: |
| ! 3,-1
| i (3,-1)
| |
| |
| |
FIGURE 14 _—

Although In x is an increasing function, it grows very slowly when x > 1. In fact, In x
grows more slowly than any positive power of x. To illustrate this fact, we compare
approximate values of the functions y = In x and y = x"/? = /x in the following table
and we graph them in Figures 15 and 16. You can see that initially the graphs of y = Vx
and y = ln x grow at comparable rates, but eventually the root function far surpasses the

logarithm.
x [ 2 5 10 50 100 | 500 | 1000 | 10,000 | 100,000
Inx | 0| 069 | L61 | 230 | 391 | 46 6.2 69 9.2 115
NS 141 | 224 | 3.16 | 7.07 | 100 | 224 | 316 100 316
[,'
% 0 | 049 | 072 | 073 | 055 | 046 | 028 | 022 0.09 0.04
X
y y

y=vx 20 +

—_—
$
t

y=Inx

[

0 /1 x 0 1000 *

FIGURE 15 FIGURE 16
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|||| Inverse Trigonometric Functions

When we try to find the inverse trigonometric functions, we have a slight difficulty:
Because the trigonometric functions are not one-to-one, they don’t have inverse functions.
The difficulty is overcome by restricting the domains of these functions so that they
become one-to-one.

You can see from Figure 17 that the sine function y = sin x is not one-to-one (use the
Horizontal Line Test). But the function f(x) = sin x, —7/2 < x < 7/2 (see Figure 18),
is one-to-one. The inverse function of this restricted sine function f exists and is denoted
by sin "' or arcsin. It is called the inverse sine function or the arcsine function.

]
y=sinx

|
5
=)
S
(
-~

FIGURE 17 FIGURE 18 y=sinx, 3 <x=<

SIE]

Since the definition of an inverse function says that

fffo=y < fO)=x
we have

. . ™ T
sin"x=y <& siny=ux and _?$y<7

@ sin'x > Thus, if —1 < x < 1, sin”'x is the number between — /2 and 7/2 whose sine is x.

sin x
EXAMPLE 13 Evaluate (a) sin~'(}) and (b) tan(arcsin ;).
SOLUTION
(a) We have
. o
s (t) = 7
because sin(7/6) = 5 and /6 lies between — /2 and /2.

3 (b) Let 8 = arcsin }, so sin § = ;. Then we can draw a right triangle with angle 6 as in
1 Figure 19 and deduce from the Pythagorean Theorem that the third side has length
9 _ VI9—1= 2\/5. This enables us to read from the triangle that

22

, . 1
! ) tanlarcsin 3} = tan 8 = ——
FIGURE 19 ( 5) 22

The cancellation equations for inverse functions become, in this case,

iy T
sin"'(sinx) = x for — $x$?

NI

sin(sin"x) =x for—l<x=<1




FIGURE 20

y=sin"'x=arcsin x

1
_
0 I X
2 w

FIGURE 21

y=cosx,0sx<7w
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The inverse sine function, sin™', has domain [—1, 1] and range [ —#/2, 7/2], and its
graph, shown in Figure 20, is obtained from that of the restricted sine function (Figure 18)
by reflection about the line y = x.

NI

The inverse cosine function is handled similarly. The restricted cosine function
f{x) = cos x, 0 < x < 7, is one-to-one (see Figure 21) and so it has an inverse function

denoted by cos ! or arccos.

cosx=y <> cosy=x and O0sy<n

The cancellation equations are

cos Mcosx)=x for0s<x<nrm

cos{fcos™x)=x for—1=sx<1

The inverse cosine function, cos !, has domain [— 1, 1] and range [0, 7). Its graph is
shown in Figure 22.

y { Y4 i
| |
| |
it | {
| |
| |
| |
= —1 >
7 3 0 3 =
! |
| i
| i
—t *~— ! |
-1 0 1 X [ i
1 1
FIGURE 22 FIGURE 23
y =cos ™' x = arccos x y=tanx,-Z <x<%

The tangent function can be made one-to-one by restricting it to the interval
(—m/2, 1/2). Thus, the inverse tangent function is defined as the inverse of the function
f(x) =tan x, —7/2 < x < 7w/2. (See Figure 23.) It is denoted by tan™' or arctan.

w

T
tan"'x =y <> tany=x and ——2—<y<?'
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EXAMPLE 14 Simplify the expression cos(tan™'x).

SOLUTION 1 Let y = tan™'x. Then tan y = x and —#/2 < y < 7/2. We want to find cos y
but, since tan y is known, it is easier to find sec y first:

sec’y = | + tan’y = | + x?

secy = /1 + x? (since secy > Qfor ~7/2 <y < 7w/2)
L+ Thus cos(tan™x) = cosy = L _ l
x secy 1 +x2
N SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier
to use a diagram. If y = tan~'x, then tan y = x, and we can read from Figure 24 (which
FIGURE 24 illustrates the case y > 0) that
Jcos(t‘an“l ) = cos L
) X) — = —————
’ T Y \/1 + .xz i
2

The inverse tangent function, tan™! = arctan, has domain R and range (—/2, 7/2).

0 Its graph is shown in Figure 25.

x We know that the lines x = * /2 are vertical asymptotes of the graph of tan. Since the
graph of tan~' is obtained by reflecting the graph of the restricted tangent function about

__________________ the line y = x, it follows that the lines y = 7/2 and y = — /2 are horizontal asymptotes

of the graph of tan~".

» The remaining inverse trigonometric functions are not used as frequently and are sum-

FIGURE 25 marized here.

y =tan~'x = arctan x

/|

] y=cscx (x| =1) <& cscy=x and y€ (0, w/2]U (7, 37/2]

y=secx (x| =1) <& secy=x and y€[0, w/2) U [m 37/2)

y=cotx (x&€R) < coty=x and y € (0, n)

4] i T X
_.l 4 I
I
: m The choice of intervals for y in the definitions of csc™ and sec™ is not universally
agreed upon. For instance, some authors use y € [0, #/2) U (#/2, 7] in the definition of
FIGURE 26 sec”". [ You can see from the graph of the secant function in Figure 26 that both this choice
y=secx and the one in (11) will work.]
Il 1.6 Exercises
HH
1. (a) What is a one-to-one function? (¢) If you are given the graph of f, how do you find the graph
(b) How can you tell from the graph of a function whether it is of f717

one-to-one? . .
ne 3-14 A function is given by a table of values, a graph, a formula,

2. (a) Suppose f is a one-to-one function with domain A and or a verbal description. Determine whether it is one-to-one.
range B. How is the inverse function f ~' defined? What is
the domain of f~'? What is the range of f~'? e

X 1 2 3 4 5 6

(b) ;(f’z;)lﬁlzrfeoflj\ﬁrll?a formula for f, how do you find a £ L5 20 36 3 28 20




Fx) I 2 4 8 16 32

9. fx) =i(x+5) 10. flx)=1+4x—x*
1. g(x) = | x| 12. g(x) = Vx
13; f(2) is the height of a football ¢ seconds after kickoff.

14. f(r) is your height at age 7.

a a a a a a a o o 5 a

15-16 1 Use a graph to decide whether f is one-to-one.
15 flx)=x>—x 16. f(x)=x>+x

a o a a o o o o a a 2

17. If f is a one-to-one function such that f(2) = 9, what
is £74(9)?

18. Let f(x) =3 + x? + tan(wx/2), where —1 < x < 1.
(a) Find £7'(3).
(b) Find f(f'(5)).

19: If g(x) = 3 + x + & find g7'(4).

20. The graph of f is given.
(a) Why is f one-to-one?
(b) State the domain and range of f ..
(c) Estimate the value of f~!(1).
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2% The formula C = 3(F — 32), where F = —459.67, expresses
the Celsius temperature C as a function of the Fahrenheit
temperature F. Find a formula for the inverse function and
interpret it. What is the domain of the inverse function?

22. In the theory of relativity, the mass of a particle with speed »

1S
Mo

m=f0 = =

where my is the rest mass of the particle and ¢ is the speed of
light in a vacuum. Find the inverse function of f and explain
its meaning.

23-28 it Find a formula for the inverse of the function.

4x —
2. f(x) = VIO =3 2 f) = L
2x+ 3
25. f(x) = e* 26, y=2x"+3
L + *
2% y = In(x + 3) 28.y=:_zx

a a o a El E a a a a a o

29-30 wi Find an explicit formula for f ! and use it to graph £,
f, and the line y = x on the same screen. To check your work, see
whether the graphs of f and f ' are reflections about the line.

M. fx)=1-2/x% x>0 3. fx)=vx>+2x, x>0

o a 0 a a a a a o a a

31. Use the given graph of f to sketch the graph of Fu

y
4

32, Use the given graph of f to sketch the graphs of ™' and 1/f.

oy

33. (a) How is the logarithmic function y = log,x defined?
(b) What is the domain of this function?
(c) What is the range of this function?
(d) Sketch the general shape of the graph of the function
y=log.x ifa > 1.
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34. (a) What is the natural logarithm?
(b) What is the common logarithm?
(c) Sketch the graphs of the natural logarithm function and the
natural exponential function with a common set of axes.

35-38 1 Find the exact value of each expression.
35. (a) log,64 (b) loge g
36. (a) logs2 ) lne’?

37. (a) log 1.25 + logx 80
(b) logs 10 + logs20 — 3 logs2

38. (a) 2(Iog13+log15) (b) e}an

39-41 wr Express the given quantity as a single logarithm.
39. 2In4 — In2 '

81. In(1 + x¥) + :lnx — Insinx

40. Inx + alny — blInz

a a o a ) a a o a o a o

42. Use Formula 10 to evaluate each logarithm correct to six deci-
mal places.

(a) loglz 10 (b) lng 8.4

43-44 1 Use Formula [0 to graph the given functions on a com-
P!

mon screen. How are these graphs related?
43. y = log;sx, y=Inx, y=logwx, y=logsx

44, y=Inx, y=1logpx, y=c¢%, y=10F

a a o o a a a a a a o a

45% Suppose that the graph of y = log; x is drawn on a coordinate
grid where the unit of measurement is an inch. How many
miles to the right of the origin do we have to move before the
height of the curve reaches 3 ft?

46. Compare the functions f(x) = x®' and g(x) = In x by graphing

both f and g in several viewing rectangles. When does the
graph of f finally surpass the graph of g?

47-48 1 Make a rough sketch of the graph of each function. Do
not use a calculator. Just use the graphs given in Figures 12 and 13
and, if necessary, the transformations of Section 1.3.

A7: (@) y = log(x + 35) (b) y=—Inx
48. (a) y = In(—x) (b) y=In|x]|
49-52 m Solve each equation for x.

49. (a)2lnx=1 () e*=5

50. (a) e>** —7=10

) In(5 = 2x) = =3
®) Inx+In(x - 1) =1
(b) e°* = Ce®*, where a # b

i(a) 27 =3
52. (a) In{lnx) = 1

o a a a a ) a o a ) o a

53-54 1m Solve each inequality for x.

53.
54,

a

(a) e < 10 (b) Inx > —1

(@2<khx<9 (b) e > >4

a a a o o a a a a a °

55-56 1 Find (a) the domain of f and (b) f~' and its domain.

55.

o

57.

(AS] 58.

59.

60.

6l

62.

flx) =3 —e*

o o ) a ) a a a Bl = a

56. f(x) = In(2 + Inx)

Graph the function f(x) = /x*> + x* + x + | and explain
why it is one-to-one. Then use a computer algebra system to
find an explicit expression for f~'(x). (Your CAS will produce
three possible expressions. Explain why two of them are irrele-
vant in this context.)

(a) Ifg(x) = S +x'x=0,usea computer algebra system to
find an expression for g ~'(x).

(b) Use the expression in part (a) to graph y = g(x), y = x, and
y = ¢ '(x) on the same screen.

If a bacteria population starts with 100 bacteria and doubles
every three hours, then the number of bacteria after ¢ hours is
n = f(t) = 100 - 273, (See Exercise 25 in Section 1.5.)
(a) Find the inverse of this function and explain its

meaning.
(b) When will the population reach 50,0007

When a camera flash goes off, the batteries immediately begin
to recharge the flash’s capacitor, which stores electric charge
given by

0() = Qy(1 — e/

(The maximum charge capacity is Jo and ¢ is measured in

seconds.)

(a) Find the inverse of this function and explain its meaning.

(b) How long does it take to recharge the capacitor to 90% of
capacity if a = 27

Starting with the graph of y = lnx, find the equation of the

graph that results from

(a) shifting 3 units upward

(b) shifting 3 units to the left

(c) reflecting about the x-axis

(d) reflecting about the y-axis

(e) reflecting about the line y = x

(f) reflecting about the x-axis and then about the line y = x

(g) reflecting about the y-axis and then about the line y = x

(h) shifting 3 units to the left and then reflecting about the
liney = x

(a) If we shift a curve to the left, what happens to its reflection
about the line y = x? In view of this geometric principle,
find an expression for the inverse of g(x) = f(x + ¢),
where f is a one-to-one function.

(b) Find an expression for the inverse of #(x) = f(cx), where
c#0.




63-68 1 Find the exact value of each expression.

8. (@ sin"'(v/3/2) () cos™'(~1)

64. (a) arctan(—1) (b) csc7'2

65. (a) tan™'v/3 (b) arcsin(—1/+/2)
66. (a) sec™'v2 (b) arcsin 1

(b) tan™! (tan ?)

(b) cos(2 sin™! (%))

67. (a) sin(sin~'0.7)

8. (a) sec(arctan 2)
9. Prove that cos(sin'x) = /1 — x2.

70-72 m Simplify the expression.

70. tan(sin™'x)

lelr! 1 HReview

1. (a) What is a function? What are its domain and range?
(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of a
function?

2. Discuss four ways of representing a function. Illustrate your
discussion with examples.

3. (a) What is an even function? How can you tell if a function is
even by looking at its graph?
(b) What is an odd function? How can you tell if a function is
odd by looking at its graph?

4. What is an increasing function?
5. What is a mathematical model?

4. Give an example of each type of function.
(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 (f) Rational function

7. Sketch by hand, on the same axes, the graphs of the following
functions.

@ flx)=x (b) g(x) = x?
©) A(x) = x? @) j(x) =x*
8. Draw, by hand, a rough sketch of the graph of each function.
(@) y =sinx (b) y =tanx
c)y=e" (d) y=Inx
) y=1/x () y=x|
@) y=+x (h) y=tan'x

9. Suppose that f has domain A and g has domain B.
(a) What is the domain of f + g7

a a a a a o a a a °
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71. sin(tan™"x)

72. sin(2 cos™'x)

o a a [ a a a a a a a a

4 73-74 w Graph the given functions on the same screen. How are

these graphs related?
. y=sinx, —w/2<x<a/2; y=sin"x; y=x

7. y=tanx, —w/2<x<w/2; y=tan"'x; y=x

a o a a a o o a a o o a

75. Find the domain and range of the function

g(x) =sin”'Gx + 1)

|34 76. (a) Graph the function f(x) = sin(sin"'x) and explain the

appearance of the graph. .
(b) Graph the function g(x) = sin"'(sin x). How do you explain
the appearance of this graph?

(b) What is the domain of fg?
(c) What is the domain of f/g?

10. How is the composite function fo g defined? What is its
domain?

11. Suppose the graph of f is given. Write an equatijon for each of
the graphs that are obtained from the graph of f as follows.
(a) Shift 2 units upward.

(b) Shift 2 units downward.

(c) Shitt 2 units to the right.

(d) Shift 2 units to the left.

(e) Reflect about the x-axis.

(f) Reflect about the y-axis.

(g) Stretch vertically by a factor of 2.
(h) Shrink vertically by a factor of 2.

(i) Stretch horizontally by a factor of 2.
(j) Shrink horizontally by a factor of 2.

12. (a) What is a one-to-one function? How can you tell if a func-
tion is one-to-one by looking at its graph?
(b) If f is a one-to-one function, how is its inverse function
7! defined? How do you obtain the graph of f ' from the
graph of f?

13. (a) How is.the inverse sine function f(x) = sin™'x defined?
What are its domain and range?
(b) How is the inverse cosine function f(x) = cos™'x defined?
What are its domain and range?
(c) How is the inverse tangent function f(x) = tan~'x defined?
What are its domain and range?




