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distance from Earth to the Sun) and their periods T (time of

21. Use the data in the table to model the population of the world © e
revolution in years).

in the 20th century by a cubic function. Then use your model
to estimate the population in the year 1925.

Planet d T
Year Population (millions) Mercuary 0.387 0.241
1900 1650 Venus 0.723 0.615
Earth 1.000 1.000
1910 1750
Mars 1.523 1.881
1920 1860 . -
Jupiter 5.203 11.861
1930 2070 -
Saturn 9.541 29.457
1940 2300
Uranus 19.190 84.008
1950 2560
1960 3040 Neptune 30.086 164.784
1970 3710 Pluto 39.507 248.350
1980 4450
1990 5280 (a) Fit a power model to the data.
2000 6080 (b) Kepler’s Third Law of Planetary Motion states that “The
square of the period of revolution of a planet is proportional
22. The table shows the mean (average) distances d of the planets to the cube of its mean distance from the Sun.” Does your
from the Sun (taking the unit of measurement to be the model corroborate Kepler’s Third Law?

IHI 1.3 New Functions from 0Id Functions

In this section we start with the basic functions we discussed in Section.}.2 and obtain new
functions by shifting, stretching, and reflecting their graphs. We also show how to combine
pairs of functions by the standard arithmetic operations and by composition.

|l _transformatians of Functions

By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of
many functions quickly by hand. It will also enable us to write equations for given graphs.
Let’s first consider translations. If ¢ is a positive number, then the graph of y = f(x) + c is
just the graph of y = f(x) shifted upward a distance of ¢ units (because each y-coordinate
is increased by the same number c). Likewise, if g(x) = f(x — ¢), where ¢ > 0, then the
value of g at x is the same as the value of f at x — ¢ (c units to the left of x). Therefore,
the graph of y = f(x — c) is just the graph of y = f(x) shifted c¢ units to the right (see
Figure 1).

Vertical and Horizontal Shifts Suppose ¢ > 0. To obtain the graph of
y = f(x) + c, shift the graph of y = f(x) a distance c units upward
y = f(x) — c, shift the graph of y = f(x) a distance c units downward
y = f(x — ¢), shift the graph of y = f(x) a distance c units to the right
y = f(x + c), shift the graph of y = f(x) a distance c units to the left

Now let’s consider the stretching and reflecting transformations. If ¢ > 1, then the
graph of y = cf(x) is the graph of y = f(x) stretched by a factor of ¢ in the vertical
direction (because each y-coordinate is multiplied by the same number ¢). The graph of
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FIGURE 1
Translating the graph of f

In Module 1.3 you can see the effect
of combining the transformations of

this section.

FIGURE 3

y
y=cf(x)
c>1)
y = fi—x)
SN | S
e Lfx)
X 0 T\:
\\f y=—fx)
FIGURE 2

Stretching and reflecting the graph of f

y = —f(x) is the graph of y = f(x) reflected about the x-axis because the point (x, y) is
replaced by the point (x, —y). (See Figure 2 and the following chart, where the results of
other stretching, compressing, and reflecting transformations are also given.)

Vertical and Horizontal Stretching and Reflecting Suppose ¢ > 1. To obtdin the graph of
y = cf (x), stretch the graph of y = f(x) vertically by a factor of ¢
y = (1/¢)f(x), compress the graph of y = f(x) vertically by a factor of ¢
y = flcx), compress the graph of y = f(x) horizontally by a factor of ¢
y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of ¢
y = —f(x), reflect the graph of y = f(x) about the x-axis
y = f(—x), reflect the graph of y = f(x) about the y-axis

Figure 3 illustrates these stretching transformations when applied to the cosine function
with ¢ = 2. For instance, in order to get the graph of y = 2cosx we multiply the
y-coordinate of each point on the graph of y = cosx by 2. This means that the graph of
y = cos x gets stretched vertically by a factor of 2.

y=cos2x
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EXAMPLE 1 Given the graph of y = V/x, use transformations to graph y = Vx -2,

y=vx=2,y=-Vry=2Jxandy=-x

SOLUTION The graph of the square root function y = +/x, obtained from Figure 13 in Sec-
tion 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch y = NEw)
by shifting 2 units downward, y = /x — 2 by shifting 2 units to the right, y = —Jx by
reflecting about the x-axis, y = 2Vx by stretching vertically by a factor of 2, and

y = /—x by reflecting about the y-axis.

YA ¥4 y y

i

0 1 x 0 / x 0 2 x 0 X 0 x 0 x
_.24
@y=vx ®y=vx~2 ©@y=vx-2 @y=—Vx @ y=2Vx (O)y=~x

FIGURE 4 oy
EXAMPLE 2 Sketch the graph of the function f(x) = x* + 6x + 10.
SOLUTION Completing the square, we write the equation of the graph as

y=x*+6x+10=(x+37+1 P
This means we obtain the desired graph by starting with the parabola y = x? and shifting
3 units to the left and then 1 unit upward (see Figure 5).
y r y
=3, o
0 x I [ R
FIGURE 5 @y=x ) y=(x+ 3 +1 i
EXAMPLE 3 Sketch the graphs of the following functions.
(a) y =sin2x b) y=1—sinx
SOLUTION
(a) We obtain the graph of y = sin 2x from that of y = sin x by compressing horizon-
tally by a factor of 2 (see Figures 6 and 7). Thus, whereas the period of y = sin x is 277,
the period of y = sin2x is 27/2 = 7.
y r y
y=sinx y=sin2x
1 < L ™\ l Va4
0 T I : X : : 07 =« ;
7 7\/ / N 5\/T \/

FIGURE 6

FIGURE 7




FIGURE 8

FIGURE 9

Graph of the length of daylight
from March 21 through December 21
at various latitudes
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(b) To obtain the graph of y = 1 — sin x, we again start with y = sin x. We reflect
about the x-axis to get the graph of y = —sin x and then we shift 1 unit upward to get
y = | — sin x. (See Figure 8.)

EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of the
time of the year at several latitudes. Given that Philadelphia is located at approximately
40°N latitude, find a function that models the length of daylight at Philadelphia.

y=1-sinx

20
18
\\
16 ok N\
SASRAY
14 il \°\\
] 3
12
——0
Hours 10 I Q::
. —— 60°N N
—— 50°N —°
6 —— 40°N \
— 30°N
4 —— 20°N
2

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Source: Lucia C. Harrison, Daylight, Twilight, Darkness and Time (New Yock: Silver, Burdett, 1935} page 40.

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By look-
ing at the blue curve we see that, at the latitude of Philadelphia, daylight lasts about
14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of the curve (the
factor by which we have to stretch the sine curve vertically) is 5(14.8 — 9.2) = 2.8.

By what factor do we need to stretch the sine curve horizontally if we measure the
time ¢ in days? Because there are about 365 days in a year, the period of our model
should be 365. But the period of y = sin¢ is 2, so the horizontal stretching factor is
¢ = 27/365.

We also notice that the curve begins its cycle on March 21, the 80th day of the year,
so we have to shift the curve 80 units to the right. In addition, we shift it 12 units
upward. Therefore, we mode! the length of daylight in Philadelphia on the ¢th day of
the year by the function '

2
= + 2.8sin| — (¢t —
L) =12 8 sm[ 365 (¢ 80):'

Another transformation of some interest is taking the absolute value of a function. If
y = | f(x)|, then according to the definition of absolute value, y = f(x) when f(x) = 0 and
y = —f(x) when f(x) < 0. This tells us how to get the graph of y = | f(x)| from the graph
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FIGURE 10

of y = f(x): The part of the graph that lies above the x-axis remains the same; the part that
lies below the x-axis is reflected about the x-axis.

EXAMPLE 5 Sketch the graph of the function y = |x* — 1].

SOLUTION We first graph the parabola y = x* — [ in Figure 10(a) by shifting the parabola
y = x*>downward | unit. We see that the graph lies below the x-axis when —1 < x < 1,
so we reflect that part of the graph about the x-axis to obtain the graph of y = |x* — 1|
in Figure 10(b).

——1\ 0 1 x _‘[ 0 1 x
\.\l

@y=x’-1 ) y=|x2—1| PP

Il _Combinations of Functions

Two functions f and g can be combined to form new functions f + g, f — ¢, fg, and f/g in
a manner similar to the way we add, subtract, multiply, and divide real numbers.
If we define the sum f + g by the equation

(f+ 9)(x) = f(x) + g(x)

then the right side of Equation 1 makes sense if both f(x) and g(x) are defined, that is, if
x belongs to the domain of f and also to the domain of g. If the domain of f is A and the
domain of g is B, then the domain of f + g is the intersection of these domains, that is,
ANB.

Notice that the + sign on the left side of Equation 1 stands for the operation of addi-
tion of functions, but the + sign on the right side of the equation stands for addition of the
numbers f(x) and g(x).

Similarly, we can define the difference f — g and the product fg, and their domains are
also A N B. But in defining the quotient f/g we must remember not to divide by 0.

Algebra of Functions Let f and g be functions with domains A and B. Then the
functions f + g, f — g, fg, and f/g are defined as follows:

(f + 9)(®) = f(x) + g(x) domain = A n B
(f— g9)x) = f(x) — g(x) domain = AN B

(fg)(x) = f(x)g(x) domain =A N B

<l) (x) = Ri) domain = {x € A N B|g(x) # 0}
g g9(x)
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EXAMPLE 6 If f(x) = /x and g(x) = /4 — x2, find the functions f + g, f — g, f9,

and f/g.
SOLUTION The domain of f(x) = /x is [0, ®). The domain of g(x) = /4 — x2 consists
1other way to solve 4 — x2 = 0: of all numbers x such that 4 — x* = 0, that is, x*> < 4. Taking square roots of both sides,
2-x2+x=0 we get | x| < 2, or —~2 < x < 2, so the domain of g is the interval [ 2, 2]. The inter-
_ + _ section of the domains of f and g is
—2 2 [0, ) N [=2,2] =[0,2]
Thus, according to the definitions, we have
(f+ 9)(x) = Vx+ /4 — x? O0sx<2
(f— 9)(x) = Vx — V4 — x2 0sx<=<2
(fo)(x) = Vx /4 — x* = Jax — x3 0sx<2
i(x)=i= S 0<x<2
g 4 — x? 4 —x°
Notice that the domain of f/g is the interval [0, 2); we have to exclude x = 2 because
g(2) = 0. FEey
The graph of the function f + g is obtained from the graphs of f and g by graphical
addition. This means that we add corresponding y-coordinates as in Figure 11. Figure 12 3
shows the result of using this procedure to graph the function f + g from Example 6. }
y :
y=(f+g)x) —
y=(f+gx g
|
fla) +gla) l
< | ,
fxy=x
N J x -2 B 0 ! S x " |
(s 3 ;
RE 11 FIGURE 12 g
|lll _Compasition of Functions

There is another way of combining two functions to get a new function. For example, 4
suppose that y = f(u) = /u and u = g(x) = x* + 1. Since y is a function of « and u is, ;
in turn, a function of x, it follows that y is ultimately a function of x. We compute this by
substitution: '

y=f) =fgx) =fx*+1)=x>+ 1
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The procedure is called composition because the new function is composed of the two
given functions f and g.

In general, given any two functions f and g, we start with a number x in the domain of
g and find its image g(x). If this number g(x) is in the domain of f, then we can calculate
the value of f(g(x)). The result is a new function h(x) = f(g(x)) obtained by substituting
g into f. It is called the composition (or composite) of f and g and is denoted by fog
(“f circle g™).

Definition Given two functions f and g, the composite function f° g (also called
the composition of f and g) is defined by

(feg)(x) = f(g(x))

The domain of fe g is the set of all x in the domain of g such that g(x) is in the domain
of f. In other words, (f° g)(x) is defined whenever both g(x) and f(g(x)) are defined. The
best way to picture fo g is by either a machine diagram (Figure 13) or an arrow diagram
(Figure 14).

_ FIGURE 13
The fog machine is composed of x glx) > — flg(x)
the g machine (first) and then (input) — Bl oo oy i (output)

the f machine.

FIGURE 14
Arrow diagram for fog x g(x) flglx)

EXAMPLE 7 If f(x) = x*and g(x) = x — 3, find the composite functions fo g and g © f.
SOLUTION We have
(fo () = f(g(x) = flx — 3) = (x = 3)°
(gof)x) =g(f(x) = g(x*) =x* = 3 i
@ NOTE- - You can see from Example 7 that, in general, fog # g °f. Remember, the
notation fo g means that the function g is applied first and then f is applied second. In

Example 7, f o g is the function that first subtracts 3 and then squares; g © f is the function
that first squares and then subtracts 3.

EXAMPLE 8 If f(x) = v/x and g(x) = +/2 — x, find each function and its domain.
(@ feog () gof (©) fof (d) gog

SOLUTION

(a) (feg) =flg) =f(V2—x)=VV2—x=32-x
The domain of fegis{x|2 —x = 0} = {x|x =<2} = (-, 2]




[fO <a<b, thena’ < b’
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(b) (g o)D) = g(f(x) = oVx) = V2 = Jx

For /x to be defined we must have x = 0. For /2 — \/x to be defined we must have
2 — \/)_c = (, that is, \/; < 2, or x < 4. Thus, we have 0 < x < 4, so the domain of
g ° f is the closed interval [0, 4].

) (fo )X = F(F0) = F(Vx) = VY = ¥x
The domain of fo f is [0, «).
() (gog)(x) = glg(x) =g(vV2 —x)=V2 - V2 —x

This expression is defined when 2 — x = 0, that is, x < 2,and 2 — /2 — x = 0. This
latter inequality is equivalent to /2 — x < 2, 0r 2 — x < 4, that is, x = —2. Thus,
—2 < x < 2, so the domain of g ° g is the closed interval [—2, 2]. ey

It is possible to take the composition of three or more functions. For instance, the com-
posite function fe g © h is found by first applying 4, then g, and then f as follows:

(fog°m(x) = f(g(h(x))

EXAMPLE 9 Find fogohif f(x) = x/(x + 1), g(x) = x'%, and A(x) = x + 3.

SOLUTION (fogeoh(x) = f(gn(x) = flglx + 3))
B oy (x + 3
=S+ 3)°) = (x +3)° + 1 i

So far we have used composition to build complicated functions from simpler ones. But
in calculus it is often useful to be able to decompose a complicated function into simpler
ones, as in the following example.

EXAMPLE 10 Given F(x) = cos’(x + 9), find functions f, g, and 4 such that F = fogo h.

SOLUTION Since F(x) = [cos(x + 9)]?, the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

Ax)=x+9 g(x) = cos x flx) =x?
Then
(fog°h)(x) = f(g(h(x) = f(g(x + 9)) = fcos(x + 9))
= [cos(x + 9> = F(x) ey

| 1.3 Exercises
T
17 Suppose the graph of £ is given. Write equations for the graphs (d) Shift 3 units to the left.

that are obtained from the graph of f as follows. (e) Reflect about the x-axis.

(a) Shift 3 units upward.
(b) Shift 3 units downward.
(c) Shift 3 units to the right.

(f) Reflect about the y-axis.
(g) Stretch vertically by a factor of 3.
(h) Shrink vertically by a factor of 3.
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2. Explain how the following graphs are obtained from the graph 6. y
i of y = f(x). 1
| (@) y = 5£(x) (b) y=f(x = 5) 3
3 © y=~f(x) @ y=-5f(x)
(e) y = f(5x) (f) y=5f(x) -3
; 3. The graph of y = f(x) is given. Match each equation with its
graph and give reasons for your choices. K] 2 5 0«

@y=fx—4 ®) y=fx)+3
© y=3f0 (d) y=—flx +4)
(&) y =2f(x + 6) g
2 ol *x

a o ) o a a a a o o a o

8. (a) How is the graph of y = 2 sin x related to the graph of
y = sin x? Use your answer and Figure 6 to sketch the
graphof y = 2 sin x.

| (b) How is the graphof y = 1 + Vx related to the graph of

| y = Vx? Use your answer and Figure 4(a) to sketch the

| 4. The graph of f is given. Draw the graphs of the following graphof y = 1 + /.

functions.

j @y=f(x+4 ) y=Ff(x) +4 9-24 mi Graph the function, not by plotting points, but by starting

& ) i h of one of the standard functions given in Section 1.2

i -9 d _ + with the grap I A

( ©> f) @y () +3 and then applying the appropriate transformations.

i J 7 .

LL i{: L % 9. y=-x° 10. y=1 — x?

E T Moy=(x+1p 12 y = x? — 4x + 3

o - -4

I 1, J’_J 13. y=1+2cosx 4. y =4sin3x

| 1

0| 1 15 y=si 2 16. y =

i . | A 15 y = sin(x/2) S A

| =5 The g_raph of fis given. Use it to graph the following 17. y = Jx+3 18. y=(x+ 2 + 3
functions. 1
(@) y = f(2x) ®) y=f(ix) 19. y = 3(x* + 8%) 20 y=1+3x—1
© y=f(x @ y=~f(=x) oy 2 N T

y AR A S

ﬁ_l r? 23. y = |sin x| M. y=|x* - 2x|

: - J a a a a o o a a a a Q L]

| of 1 | I

i [ W“ 25. The city of New Orleans is located at latitude 30°N. Use

L .

Figure 9 to find a function that models the number of hours of
daylight at New Orleans as a function of the time of year. Use
the fact that on March 31 the Sun rises at 5:51 A.M. and sets at
6:18 .M. in New Orleans to check the accuracy of your model.

‘ Y 26. A variable star is one whose brightness alternately increases
3 y= \/3;7 ) and decreases. For the most visible variable star, Delta Cephei,
Bl L5 the time between periods of maximum brightness is 5.4 days,
dq the average brightness (or magnitude) of the star is 4.0, and its
—OI 3 x

6~7 m The graph of y = /3x — x? is given. Use transformations
to create a function whose graph is as shown.

brightness varies by *+0.35 magnitude. Find a function that
models the brightness of Delta Cephei as a function of time.




9 (a) How is the graph of y = f(| x|} related to the graph of f?
(b) Sketch the graph of y = sin | x|.
(c) Sketch the graph of y = /[ x|.

98. Use the given graph of f to sketch the graph of y = L/f(x).
Which features of f are the most important in sketching
y = 1/f(x)? Explain how they are used.

g

/;\
\

29-30 m Use graphical addition to sketch the graph of f + g.

9. Y
~.g
™~
f ™~
0 X
30. ¥
L |1 TN\S
/_
0 /g X

o a o

o n a o a a a

31-32 m Find f + g, f — g, fg, and f/g and state their domains.
B f)=x>+2x% gx)=3x2-1

. fo=V1+x, glx)=+1—-x

Ll a a

o

a o o El o a )

33-34 w1 Use the graphs of f and g and the method of graphical
addition to sketch the graph of f + g.

glx) = 1/x M. () =2, glx) = —x

3. ) =,

o o a

o

a a a a a o )

35-40 i Find the functions fog,g°f, fof, and g ° g and their

domains.

Bof)=2x2~x, g(x) =3x+2
B f=1-% gx)=1/x
. f(x) =sinx, glx)=1-+x

o

a
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38 f(x) =1—3x, glx) =5x*+3x+2
x+ 1
x+2

0. f(x) =V2x+3, glx)=x*+1

a a a a o a a a a a

S AW =xt gl =

41-44 mi Find fegoh.

4. f(,;) =x+ L1, gx)=2x, h(x)=x-1

42. f)=2x—1, g)=x* Ax)=1—x

3. fF)=vVx—1, g)=x+2, hx)=x+3
4. f(x) = . g(x) =cosx, h(x)=+x+3

x+ 1

o ) ° a ° ° a a o a

45-50 m Express the function in the form fo g.

45. F(x) = (x2 + 1) 46. F(x) = sin(vx)
x2
47. G(x) = 714 48. G(x) = S 13
tan ¢

49. u(?) = Jcost

o o a a o a ) a a a

3 u(t) =

1 + tan¢

51-53 m Express the function in the form feo g o h.
51 H(x) =1 — 3~ 52. H(x) = Yz = |
53. H(x) = sec*(v/x)

a a a ) a a o o o o

54. Use the table to evaluate each expression.

(a) f(g(1) (b) g(f(1) (c) fUf(1)
(d) g(q(1)) (e) (9°)3) () (fo9)6)
x L] 2|3 |4]5]6

3%
(W]
(V)]

fo) | 3|1 | 4

g(x) 6 3 2 | 2 3

55. Use the given graphs of f and g to evaluate each expression,

or explain why it is undefined.

(@) f(g(2)) (d) g(f(0)) (© (fog)0)
(d) (g°f)6) @) (geg)(-2) ) (fo )4
y
N
g f
2
0 2 X
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56. Use the given graphs of f and ¢ to estimate the value of
f(g(x)) for x = —~5, —4, =3, ..., 5. Use these estimates to
sketch a rough graph of fog.

NZEERN %
X AN/
/I\ \\/

L 1 Jwy | ]

{b) Sketch the graph of the voltage V(z) in 4 circuit if the
switch is turned on at time ¢ = 0 and 120 volts are applied
instantaneously to the circuit. Write a formula for V(¢) in
terms of H{z).

(c) Sketch the graph of the voltage V{(¢) in a circuit if the

* switch is turned on at time ¢ = 5 seconds and 240 volts are
applied instantaneousty to the circuit. Write a formula for
W(¢) in terms of H(s). (Note that starting at £ = 5 corre-

\ ol i sponds to a trans_lation.)
t i L 60. The Heaviside function defined in Exercise 59 can also be used
f \ / to define the ramp function y = ctH(r), which represents a
p
N[ \] gradual increase in voltage or current in a circuit.
| (a) Sketch the graph of the ramp function y = rH{(z).
(b) Sketch the graph of the voltage V(¢) in a circuit if the
5%: A stone is dropped into a lake, creating a circular ripple that switch is turned on at time ¢ = 0 and the voltage is gradu-
travels outward at a speed of 60 cm/s. ally increased to 120 volts over a 60-second time interval.
(a) Express the radius r of this circle as a function of the Write a formula for V(1) in terms of H{(z) for : < 60.
time ¢ (in seconds). (c) Sketch the graph of the voltage V(r) in a circuit if the
(b) If A is the area of this circle as a function of the radius, find switch is turned on at time 1 = 7 seconds and the voltage
A © r and interpret it. is gradually increased to {00 volts over a period of
i Lo . . 25 seconds. Write a formula for V(t) in terms of H(¢) for
58. An airplane is flying at a speed of 350 mi/h at an altitude of f< 32
one mile and passes directly over a radar station at time ¢ = 0.
(a) Express the horizontal distance d (in miles) that the plane 61. (a) If g(x) = 2x + 1 and h(x) = 4x* + 4x + 7, find a function
has flown as a function of z. f such that feo g = k. (Think about what operations you
(b) Express the distance s between the plane and the radar would have to perform on the formula for g to end up with
station as a function of d. the formula for k.)
(c) Use composition to express s as a function of ¢. (b) If f(x) = 3x + 5 and A(x) = 3x® + 3x + 2; find a function
59. The Heaviside function A is defined by g such that fo g = h.
. 62. If f(x) = x + 4 and A(x) = 4x — 1, find a function g such that
F() = 0 ifr<O of=h
I ife=0 g '
% i i leth = foaq. I\
It is used in the study of electric circuits to represent the 63 Suppose 915 aneven function and let & = f o g. Is h always z}n
. . even function?
sudden surge of electric current, or voltage, when a switch 1s
instantaneously turned on. 64. Suppose g is an odd function and let i = fo g. Is h always an

(a) Sketch the graph of the Heaviside function.

{1l 1.4 Graphing Caiculators and Computers

odd function? What if f is odd? What if f is even?

In this section we assume that you have access to a graphing calculator or a computer with
graphing software. We will see that the use of such a device enables us to graph more com-
plicated functions and to solve more complex problems than would otherwise be possible.
We also point out some of the pitfalls that can occur with these machines.

Graphing calculators and computers can give very accurate graphs of functions. But we
will see in Chapter 4 that only through the use of caiculus can we be sure that we have
uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph of a func-
tion in a display window or viewing screen, which we refer to as a vigwing rectangle.
The default screen often gives an incomplete or misleading picture, so it is important to
choose the viewing rectangle with care. If we choose the x-values to range from a mini-
mum value of Xmin = a to a maximum value of Xmax = b and the y-values to range from
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D Trigonomefry
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|||| fingles

Angles can be measured in degrees or in radians (abbreviated as rad). The angle given by
a complete revolution contains 360°, which is the same as 27 rad. Therefore

7rad = 180°
and
180 \°
lrad = [—— | ~57.3° 1° = —rad ~ 0.017 rad
T 180
EXAMPLE 1
(a) Find the radian measure of 60°. (b) Express 57/4 rad in degrees.
SOLUTION

(a) From Equation 1 or 2 we see that to convert from degrees to radians we multiply by
7/180. Therefore

T T
°— 60l — | = —rad
60 0(180) 3ra

(b) To convert from radians to degrees we multiply by 180/7. Thus

0
57 i = z(&) _ 256

4 4 ™ vl

In calculus we use radians to measure angles except when otherwise indicated. The fol-
lowing table gives the correspondence between degree and radian measures of some com-
mon angles.

Degrees | 0° | 30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | 270° | 360°

. T ™ T T 2 37 S 37
Radians 0 — — — — - — —_— T —_— 27
6 4 3 2

Figure | shows a sector of a circle with central angle @ and radius r subtending an arc
with length a. Since the length of the arc is proportional to the size of the angle, and since
the entire circle has circumference 27rr and central angle 27, we have

9 __a
2 27r

Solving this equation for € and for a, we obtain

a
r

Remember that Equations 3 are valid only when 8 is measured in radians.
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In particular, putting a = r in Equation 3, we see that an angle of 1 rad is the angle sub-
tended at the center of a circle by an arc equal in length to the radius of the circle (see
Figure 2).

EXAMPLE 2

(a) If the radius of a circle is 5 cm, what angle is subtended by an arc of 6 cm?

(b) If a circle has radius 3 cm, what is the length of an arc subtended by a central angle
of 37/8 rad?

SOLUTION
(a) Using Equation 3 with a = 6 and r = 5, we see that the angle is

6=2%=12rad

(b) With r = 3 cm and 6 = 37/8 rad, the arc length is

=23 3 o cm
—g=31-=) =25
a 8 8 ey

The standard position of an angle occurs when we place its vertex at the origin of a
coordinate system and its initial side on the positive x-axis as in Figure 3. A positive angie
is obtained by rotating the initial side counterclockwise until it coincides with the termi-
nal side. Likewise, negative angles are obtained by clockwise rotation as in Figure 4.

Yy Yy
initial side
/ 0 0 X
terminal
. terminal side
side g initial side /
7
O X
FIGURE3 =0 FIGURE 4 6<0

Figure 5 shows several examples of angles in standard position. Notice that different
angles can have the same terminal side. For instance, the angles 37/4, —57/4, and 117/4
have the same initial and terminal sides because

37 _5_77 3 i
s 7 4 4
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||| _The Trigonometric Functions

For an acute angle 6 the six trigonometric functions are defined as ratios of lengths of sides
of a right triangle as follows (see Figure 6).

0 h
sin 8 = _hpp csc 6 = P
hypotenuse opDosit yp opp
0S1ie .
PP adj hyp
: cos 6 = —— sec = ——
0 O e hyp adj
adjacent di
_ opp _ ag
FIGURE 6 tan 6 = adj cot § = opp

This definition doesn’t apply to obtuse or negative angles, so for a general angle ¢ in
standard position we let P(x, y) be any point on the terminal side of # and we let r be the
distance | OP| as in Figure 7. Then we define

y ' y r
P(x,) sin 8 = — csc = —
r y
d X r
Ry cos § = — sec § = —
~ r X
o X y x
tan § = — cot § = — o
FIGURE 7 * Y

Since division by 0 is not defined, tan @ and sec § are undefined when x = 0 and csc @
and cot 8 are undefined when y = 0. Notice that the definitions in (4) and (5) are consis-
tent when @ is an acute angle.

If @ is a number, the convention is that sin § means the sine of the angle whose radian
measure is . For example, the expression sin 3 implies that we are dealing with an angle
of 3 rad. When finding a calculator approximation to this number we must remember to
set our calculator in radian mode, and then we obtain

sin 3 = 0.14112
If we want to know the sine of the angle 3° we would write sin 3° and, with our calculator
in degree mode, we find that

sin 3° = 0.05234

The exact trigonometric ratios for certain angles can be read from the triangles in Fig-

ure 8. For instance,
J2 /x 2 T

401 1 o 1 i T 1 I V)
z ™ sin — = — in—=— sin— = ——

4 3 4 2 6 2 3 2

1 J3
T 1 T T |
FIGURE 8 cos - = 7—2—— cos i cos 373

|98

V3
2

tan— =1 tan—71~-L tan — = /3
6 3




sin6>0 Y all ratios >0
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0 Cx
T
tan 6 >0 cos §>0
FIGURE 9
P(-1,43) |
2
J3
2m
T\ 3
NN
1 0 x
FIGURE 10
5 x=421
0
2
FIGURE 11
16
]
X
40°

FIGURE 12
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The signs of the trigonometric functions for angles in each of the four quadrants can be
remembered by means of the rule “All Students Take Calculus” shown in Figure 9.
EXAMPLE 3 Find the exact trigonometric ratios for § = 27/3.

SOLUTION From Figure 10 we see that a point on the terminal line for § = 27/3 is
P(—1, y/3). Therefore, taking

x= -1 y = \/3 r=2
in the definitions of the trigonometric ratios, we have
20 3 27 1 27
R S —_——— - t — = -/3
in 3 2 cos 3 7 an 3 V3
27 2 27 ) cot |
csC— = —= sec—— = — = ——
33 3 3 V3 i
The following table gives some values of sin # and cos 8 found by the method of
Example 3.
T T T T 27 37 S 37
T" 1 4|32 3 @ | e J TR
. 1 1 J3 V3 1 1
sin @ 0 5 J 'V—/z 2 I 5 \/i 3 0 1 0
NE) 1 | 1 l J3
{ZS 7] 1 T 7—2— ‘2— 0 - 5 - f — B —~1 0 I

EXAMPLE 4 If cos § = 7 and 0 < @ < 7/2, find the other five trigonometric functions
of 6.

SOLUTION Since cos @ = %, we can label the hypotenuse as having length S and the
adjacent side as having length 2 in Figure 11. If the opposite side has length x, then the
Pythagorean Theorem gives x* + 4 = 25 and so x* = 21, x = v21. We can now use
the diagram to write the other five trigonometric functions:

. V21 V21
sinf=—— tan § = ——
5 2
6= > 0= ) cot § = 2
csc Nen sec > 0 Nen -
EXAMPLE 5 Use a calculator to approximate the value of x in Figure 2.
SOLUTION From the diagram we see that
. 16
tan 40° = —
. X
. 16
Therefore x = — = 19.07
tan 40 g
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il Odd functions and even functions are
discussed in Section 1.1.

lll Trigonametric identities

A trigonometric identity is a relationship among the trigonometric functions. The most ele-
mentary are the following, which are immediate consequences of the definitions of the trig-
onometric functions.

tan 6

For the next identity we refer back to Figure 7. The distance formula (or, equivalently,
the Pythagorean Theorem) tells us that x> + y*> = r* Therefore

2
. Y
sin’f + cos’f =5+ 5 =——F—=—=1
r r r r

We have therefore proved one of the most useful of all trigonometric identities:

sin?0 + cos?0 = 1

If we now divide both sides of Equation 7 by cos*8 and use Equations 6, we get

tan’g + 1 = sec?d

Similarly, if we divide both sides of Equation 7 by sin’8, we get

1 + cot?g = csc?g

sin(—#) = —sin @

-

The identities

cos(—§) = cos @

show that sin is an odd function and cos is an even function. They are easily proved by
drawing a diagram showing € and —# in standard position (see Exercise 39).
Since the angles 8 and 6 + 27 have the same terminal side, we have

sin(@ + 27) = sin 6 cos(@ + 21) = cos 6

These identities show that the sine and cosine functions are periodic with period 27r.
The remaining trigonometric identities are all consequences of two basic identities
called the addition formulas:
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sin{x + y) = sinx cos y + cos x sin y

cos(x + y) = cos x cos y — sin x sin y

The proofs of these addition formulas are outlined in Exercises 85, 86, and 87.
By substituting —y for y in Equations 12a and 12b and using Equations 10a and 10b,
we obtain the following subtraction formulas:

sin{x — y) = sin x cos y — cos x sin y

cos{x — y) = cos x cos y + sin x sin y

Then, by dividing the formulas in Equations 12 or Equations 13, we obtain the corre-
sponding formulas for tan{x * y):

tan x + tan
tan(x + y) = Y

1 — tan x tan y
tan x — tan y

tan(x — y) =

1 +tan x tan y

If we put y = x in the addition formulas (12), we get the double-angle formulas:

sin 2x = 2 sin x cOS x

cos 2x = cos’x — sin’x

Then, by using the identity sin’x + cos’c = 1, we obtain the following alternate forms of
the double-angle formulas for cos 2x:

cos 2x = 2 cos’x — 1

cos 2x = | — 2sin’x

If we now solve these equations for cos®x and sin’x, we get the following half-angle for-
mulas, which are useful in integral calculus:

5 I + cos.2x
cos’x = —————
2
1 — cos2x
sin%x = —

Finally, we state the product formulas, which can be deduced from Equations 12
and 13:
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sin x cos y = 3[sin(x + y) + sin(x — y)]
cos x cos y = 3[cos(x + y) + cos(x —~ y)]

~sin x siny = 3[cos(x — y) — cos(x + y)]

There are many other trigonometric identities, but those we have stated are the ones
used most often in calculus. If you forget any of them, remember that they can all be
deduced from Equations 12a and 12b.

EXAMPLE 6 Find all values of x in the interval [0, 277] such that sin x = sin 2.x.

SOLUTION Using the double-angle formula (15a), we rewrite the given equation as
sin x = 2 sin x cos x or sinx(l —2cosx) =0

Therefore, there are two possibilities:

sinx =0 or l —2cosx=0
x=0,m2m cosx=%
=37
373
The given equation has five solutions: 0, 7/3, 7, 57/3, and 2. e

|||| Graphs of Trigonomefric Functions

The graph of the function f(x) = sin x, shown in Figure 13(a), is obtained by plotting
points for 0 < x =< 24 and then using the periodic nature of the function (from Equa-
tion 11) to complete the graph. Notice that the zeros of the sine function occur at the

y
T o1+ 3w
N 2 N
-7 ——1 _»0 72_7' M’TT STV 3'71\’\C
(a) f(x)=sinx
¥y
1
N7 ] 0\ T N
u—l | %r 3‘77,- 2T %7\_/ X

FIGURE 13 (b) g{x) =cosx
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integer multiples of , that is,

whenever x = nr, & an integer

. T
COS x = sm(x + ?)

(which can be verified using Equation 12a), the graph of cosine is obtained by shifting the
graph of sine by an amount /2 to the left [see Figure 13(b)]. Note that for both the sine
and cosine functions the domain is (—oo, ) and the range is the closed interval [—1, 1].
Thus, for all values of x, we have

sin x = Q

Because of the identity

The graphs of the remaining four trigonometric functions are shown in Figure 14 and
their domains are indicated there. Notice that tangent and cotangent have range (—oo, ©),
whereas cosecant and secant have range {—, —1] U [1, «). All four functions are peri-
odic: tangent and cotangent have period 7, whereas cosecant and secant have period 27

| ’ '
|
| I
{ |
! I
| |
| |
| [l
N ™\ Tl am\
i 2 2 | 2
i |
| |
| |
| |
| |
(a)y=tanx (b) y=cotx
Y | o | |
| | | |
| | | |
| y=sinx | | y=cosx |
| | 1 | |
_T L ~ 3w 771 T~ 37,-]
2 ol %I 2 w2l XL 3l
T t LY t T A L — —
/ T | 7 T\ T 7 X
N~ o Ll o2 | ~__ - ~__~ |-l 2, ~__ -~ |
| 1 | |
[ | | |
| | | |
| | | |
| | l i
FIGURE 14 (¢)y=cscx (d) y=secx
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|l D Exercises

it

1-6 i Convert from degrees to radians.

1 210° 2. 300° 3.
4. —315° 5. 900° 6. 36°

a a a a a a 3 a a a

7-12 u Convert from radians to degrees.

1. 47 8 — 1T 9. 37
2 i2
8n 37
10. — 1. — 12. 5
3 8

13. Find the length of a circular arc subtended by an angle of
7r/12 rad if the radius of the circle is 36 cm.

14. If a circle has radius 10 cm, find the length of the arc
subtended by a central angle of 72°. -

15. A circle has radius 1.5 m. What angle is subtended at the center
of the circle by an arc | m long?

16. Find the radius of a circular sector with angle 37/4 and arc
length 6 cm.

17-22 w Draw, in standard position, the angle whose measure is

given.

17. 315° 18. —150° 19, —%m
Tm
20. Trad 2. 2rad 22. —3rad

a a a ] a a a a @ a a a

23-28 n Find the exact trigonometric ratios for the angle whose
radian measure is given.

37 47 97

., — 14, — . —
23 2 3 25 2

S Il

. — 7. — , ——
26 —57 2 6 28 2

a a a a a o a a a a

29-34 i Find the remaining trigonometric ratios.

3 T
29. sin§ = — << —
sin 8 5 0<8 >

30. tana = 2, O<a<—121

3. secp = —1.5, ?77< ¢ <

37
T<x < —

1
32. =—-—,
cos x 3 >

33. cot B8 =3,

T< B <2nw

35-38 ur Find, correct to five decimal places, the length of the side
labeled x.
35. 36. x
0]
10cm
x
25cm

37. 38.
X
3w
x 3
27
5
8cm

o o a a a a a s a a a a

39-41 1 Prove each equation.

(b) Equation 10b
(b) Equation 14b
(b) Equation 18b

39. (a) Equation 10a

40. (a) Equation 14a

41. (a) Equation 18a
(c) Equation [8c

a a a a a a o

42-58 m Prove the identity.

42, cos<% - x) = sin x

43. s'm(—; + x) =cosx

4. sin(w — x) =sinx

45. sin 0 cot 6 = cos 6 46. (sinx + cos x)* =1 + sin2x

47. secy —cosy = tany siny
48. tan’x — sin’a = tan’a sin’a

49, cot’d + sec’# = tan’f + csc’@

2 tan 6
50. 2 csc 2t =sect csct 51. tan 26 = Lz
1 — tan“@
1 1
52, — + —— = 2 sec’d
1 —sin @ I +siné

53. sin x sin 2x + cos x cos 2x = cos x

54. sin* ~ sin’y = sin(x + y) sin(x ~ y)

sin ¢
= +
55 [ —cosd csc ¢ + cot

56.
57.

58.

59-
Oa

59.
81
63.

65-
equ

77—
ures
whe

17.

9.

81

83.




sin(x + y)
56. tanx + tany = ————
COS X COS y

57. sin 30 + sin @ = 2 sin 26 cos @
58. cos 30 = 4 cos’@ — 3cos @

o a = o o o o o a o o a

59-64 mn If sin x =} and sec y = 3 where x and y lie between
0 and 7/2, evaluate the expression.
59. sin(x + y) 60. cos(x + y)
61. cos(x — y) 62. sin(x — y)

63. sin 2y 64. cos2y

2 o a o -] o a o a o o a

65-72 m Find all values of x in the interval [0, 2] that satisfy the
equation.

65. 2cosx~1=0 66. 3cot’x =1
67. 2sin’x = 1 68.

tanx| =1
69. sin 2x = cos x 70. 2 cosx +sin2x =0

72. 2 + cos2x =3 cos x

o a o o a o o a o a a o

71. sin x = tan x

73-76 w Find all values of x in the interval [0, 2] that satisfy the

inequality.
73. sinx <3 74. 2cosx +1>0

75. -1 <tanx <1 76. sin x > cos x

a a a a a a a a a o o o

77-82 m Graph the function by starting with the graphs in Fig-
ures 13 and 14 and applying the transformations of Section 1.3
where appropriate.

T
7. y= - —
y cos(x 3 )

1 T
9 y=— _z
Y 3””'()‘ 2)

8. y = |sin x|

78. y =tan2x

80. y=1+secx

82. y=2+ sin(x +%)

a o o a o o a o o a a a

83. Prove the Law of Cosines: If a triangle has sides with lengths
a, b, and ¢, and 6 is the angle between the sides with lengths a
and b, then

ct=a’+ b*—2abcos b
P(x,y)
|
b : c
|
|

o d
0 (a,0) x
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[Hint: Introduce a coordinate system so that 0 is in standard
position as in the figure. Express x and y in terms of # and then
use the distance formula to compute c.]

84. In order to find the distance | AB| across a small inlet, a point C
is located as in the figure and the following measurements were
recorded:

£4C = 103 |AC| = 820 m |BC| =910 m
Use the Law of Cosines from Exercise 83 to find the required

distance.

A

85. Use the figure to prove the subtraction formula
cos{a — B) = cos & cos B + sin « sin B

[Hint: Compute ¢’ in two ways (using the Law of Cosines from
Exercise 83 and also using the distance formula) and.compare
the two expressions.]

y
Alcos a,sin a)

c
1 B(cos B, sin B)
1

a\ﬂ

86. Use the formula in Exercise 85 to prove the addition formula
for cosine (12b).

87. Use the addition formula for cosine and the identities

cos| =~ 6| =sin 6 in{ — ~ § ) = cos §
0S 2 = sin sin 7 == COS

to prove the subtraction formula for the sine function.

88. Show that the area of a triangle with sides of lengths a and b

and with included angle 6 is

v

A = 3absin 0
89. Find the area of triangle ABC, correct to five decimal places, if

|BC| =3 cm LABC = 107°

|AB| = 10 cm




