 T——
——

In A Preview of Calculus [page 2) we saw how the idea of
a limit underlies the various branches of calculus. It is there-

fore appropriate to begin our study of calculus by investi-

gating limits and their properties. The special type of limit
that is used fo find tangents and velocities gives rise fo the

central idea in differential calculus, the derivative.

3

Locate tangents interactively and explore
them numerically.

Resources / Module 1
¢/ Tangents

/ What Is a Tangent?

FIGURE 1

HIGURE 2

2.1 The Tangent and Velocity Problems

In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

|||| The Tangent Problem

The word tangent is derived from the Latin word tangens, which means “touching.” Thus,
a tangent to a curve is a line that touches the curve. In other words, a tangent line should
have the same direction as the curve at the point of contact. How can this idea be made
precise? ,

For a circle we could simply follow Euclid and say that a tangent is a line that intersects
the circle once and only once as in Figure 1(a). For more complicated curves this defini-
tion is inadequate. Figure 1(b) shows two lines / and ¢ passing through a point P on a curve
C. The line [ intersects C only once, but it certainly does not look like what we think of as
a tangent. The line ¢, on the other hand, looks like a tangent but it intersects C twice.

(@) ®

To be speciﬁc, let’s look at the problem of trying to find a tangent line ¢ to the parabola
y = x? in the following example.

EXAMPLE 1 Find an equation of the tangent line to the parabola y = x at the point P(1, 1).

SOLUTION We will be able to find an equation of the tangent line ¢ as soon as we know its
slope m. The difficulty is that we know only one point, P, on ¢, whereas we need two
points to compute the slope. But observe that we can compute an approximation to m by
choosing a nearby point Q(x, x*) on the parabola (as in Figure 2) and computing the
slope mpg of the secant line PQ. ’

We choose x # 1 so that Q # P. Then

xt -1

Mmpo —
¢ x—1
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X mpeg
2 3
1.5 25
1.1 2.1
1.01 2.01
1.001 2.001
X mMpg
0 1
0.5 L5
0.9 1.9
0.99 1.99
L 0.999 1.999

For instance, for the point Q(1.5, 2.25) we have

225-1 125
MRT 51 05

The tables in the margin show the values of mpg for several values of x close to 1. The
closer @ is to P, the closer x is to 1 and, it appears from the tables, the closer mpg is to 2
This suggests that the slope of the tangent line ¢ should be m = 2.

We say that the slope of the tangent line is the limiz of the slopes of the secant lines,
and we express this symbolically by writing

2.5

2 _
X 1=2
1

lim mpg = m and lim
O—P =1 X —
Assuming that the slope of the tangent line is indeed 2, we use the point-slope form
of the equation of a line (see Appendix B) to write the equation of the tangent line
through (1, 1) as

y—1=2(x-1) or y=2x—1

Figure 3 illustrates the limiting process that occurs in this example. As Q approaches
P along the parabola, the corresponding secant lines rotate about P and approach the
tangent line ¢.

N
N

Q approaches P from the right

y T y
t
Q P P
Q
0 / 4 x
Q approaches P from the left
FIGURE 3 o

In Module 2.1 you can see how the
process in Figure 3 works for five

additional functions.

Many functions that occur in science are not described by explicit equations; they
defined by experimental data. The next example shows how to estimate the slope of tx
tangent line to the graph of such a function.
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; 0 EXAMPLE 2 The flash unit on a camera operates by storing charge on a capacitor and

releasing it suddenly when the flash is set off. The data at the left describe the charge Q
0.00 100.00 remaining on the capacitor (measured in microcoulombs) at time ¢ (measured in seconds
0.02 81.87 - after the flash goes off ). Use the data to draw the graph of this function and estimate the
0.04 67.03 slope of the tangent line at the point where ¢ = 0.04. [ Note: The slope of the tangent line
0.06 54.88 represents the electric current flowing from the capacitor to the flash bulb (measured in
0.08 44.93 microamperes).] ’ ’ .
0.10 36.76

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that approx1— A

mates the graph of the function.

[
100

—90

—80

5

=70 P

=60 ~

FIGURE 4 | | L |

Given the points P(0.04, 67.03) and R(0.00, 100.00) on the graph, we find that the
slope of the secant line PR is ,

100.00 — 67.03 .
=—————————— = —82425
T 0,00 - 0.04
The table at the left shows the results of similar calculations for the slopes of other
L R meg secant lines. From this table we would expect the slope of the tangent line at ¢ = 0.04 to
10,00, 100.00) —824.25 lie somewhere between —742 and —607.5. In fact, the average of the slopes of the two

.02, 81.87) —742.00 closest secant lines is

i1.06, 54.88) —607.50 i
(0,08, 44.93) ~552.50 2(=742 = 607.5) = 67475
. “ 0. 36-76) 20450 So, by this method, we estimate the slope of the tangent line to be —675.

Another method is to draw an approximation to the tangent line at P and measure the
sides of the triangle ABC, as in Figure 4. This gives an estimate of the slope of the tan-
gent line as

i3 The physical meaning of the answer in
Hawnple 2 is that the electric current flowing - |AB‘ 80-4 — 3536 _ —670 .

feqien the capacitor to the flash bulb after BC 006 — 0.02 ’
1 socond is about ~670 microamperes. | i : b

|||| The Velocity Problem

If you watch the speedometer of a car as you travel in city traffic, you see that the needle
doesn’t stay still for very long; that is, the velocity of the car is not constant. We assume
from watching the speedometer that the car has a definite velocity at each moment, but how
is the “instantaneous” velocity defined? Let’s investigate the example of a falling ball.
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EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN
Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that the
distance fallen by any freely falling body is proportional to the square of the time it has
been falling. (This model for free fall neglects air resistance.) If the distance fallen after !
seconds is denoted by s(f) and measured in meters, then Galileo’s law is expressed by the
equation

s() = 4.9¢2

The difficulty in finding the velocity after 5 s is that we are dealing with a single instan
of time (¢ = 5), so no time interval is involved. However, we can approximate the desircd
quantity by computing the average velocity over the brief time interval of a tenth of a
second from ¢t = Stot = 5.1:

. distance traveled
average velocity = —/——

time elapsed
The CN Tower in Toronto is currently the tallest = M
freestanding building in the world. 0.1
4.9(5.1) — 4.9(5)°
= ( )O 1 ) = 4949 m/s

The following table shows the results of similar calculations of the average velocity oves
successively smaller time periods. : 3

Time interval Average velocity (m/s)
S5=st<6 53.9
S5=sr=s51 49.49
5=r=<505 49.245
5<t<501 49.049
5<1r=5001 49.0049

It appears that as we shorten the time period, the average velocity is becoming closer to
49 m/s. The instantaneous velocity when ¢ = 5 is defined to be the limiting value of 3
these average velocities over shorter and shorter time periods that start at ¢ = 5. Thus,

the (instantaneous) velocity after 5 s is

v=49m/s s

You may have the feeling that the calculations used in solving this problem are very
similar to those used earlier in this section to find tangents. In fact, there is a close con
nection between the tangent problem and the problem of finding velocities. If we draw thed
graph of the distance function of the ball (as in Figure 5) and we consider the pointé§
P(a,4.9a%) and Q(a + h,4.9(a + h)*) on the graph, then the slope of the secant |
PQis
_49(a + h)? — 4.9a°

Mpg

(a+h)—a
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which is the same as the average velocity over the time interval [a, a + h]. Therefore, the
velocity at time ¢ = a (the limit of these average velocities as & approaches 0) must be
equal to the slope of the tangent line at P (the limit of the slopes of the secant lines).

s
s=4.97%_

Q

slope of secant line
= average velocity

s
s=4.97

slope of tangent
= instantaneous velocity

}
|

o
~d
Q
Q
+
bl

FIGURE 5

t O/a t

Examples 1 and 3 show that in order to solve tangent and velocity problems we must
be able to find limits. After studying methods for computing limits in the next five sections,
we will return to the problems of finding tangents and velocities in Section 2.7.

§. A tank holds 1000 gallons of water, which drains from the
Battom of the tank in half an hour. The values in the table show
the volume V of water remaining in the tank (in gallons) after
{ minutes.

£ amnin) 5 10 15 20 25 30
Vgal) 694 444 250 111 28 0

)

1a) It P is the point (15, 250) on the graph of V, find the slopes
of the secant lines PQ when Q is the point on the graph
with ¢ = 5, 10, 20, 25, and 30.

411 Listimate the slope of the tangent line at P by averéging the
slopes of two secant lines. '

i} Use a graph of the function to estimate the slope of the
tangent line at P. (This slope represents-the rate at which the
water is flowing from the tank after 15 minutes.)

% A vardiac monitor is used to measure the heart rate of a patient
alier surgery. It compiles the number of heartbeats after f min-
wtes, When the data in the table are graphed, the slope of the
isigent line represents the heart rate in beats per minute.

finn) 36 38 40 42 44
Hearlbeats 2530 2661 2806 2948 3080

Ihe monitor estimates this value by calculating the slope
«f u secant line. Use the data to estimate the patient’s heart rate

after 42 minutes using the secant line between the points with
the given values of r.
(@)t=36 and =42
(c)t=40 and r=42
‘What are your conclusions?

8% The point P(l, %) lies on the curve y = x/(1 + x).
(a) If Q is the point (x, x/(1 + x)), use your calculator to find
the slope of the secant line PQ (correct to six decimal
places) for the following values of x:

(b) t=38 and t=42
(d) t=42 and t=44

@ 05 (i) 0.9
(iii) 0.99 (iv) 0.999
™ 15 i) 1.1
(vii) 1.01 (viii) 1.001

(b) Using the results of part (a), guess the value of the slope of
the tangent line to the curve at P(1,3).

(c) Using the slope from part (b), find an equation of the
tangent line to the curve at P( 1, %)

4, The point P(2, In 2) lies on the curve y = In x.
(a) If Q is the point (x, In x), use your calculator to find the
slope of the secant line PQ (correct to six decimal places)
for the following values of x:

@ 15 @) 1.9
(i) 1.99 (iv) 1.999
) 25 (vi) 2.1
(vii) 2.01 (viii) 2.001

(b) Using the results of part (a), guess the value of the slope of
the tangent line to the curve at P(2, In 2).
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(c) Using the slope from part (b), find an equation of the
tangent line to the curve at P(2, In 2).

(d) Sketch the curve, two of the secant lines, and the tangent
line.

a ball is thrown into the air with a velocity of 40 ft/s, its
height in feet after ¢ seconds is given by y = 40t — 16¢%.
(a) Find the average velocity for the time period beginning
when ¢ = 2 and lasting
(i) 0.5 second (ii) 0.1 second
(iil) 0.05 second  (iv) 0.01 second
(b) Find the instantaneous velocity when ¢ = 2.

6. If an arrow is shot upward on the moon with a velocity of
58 m/s, its height in meters after ¢ seconds is given by
h =58 — 0.83¢%
(a) Find the average velocity over the given time intervals:
@ I1,2] (i) [1, 1.5] (iii) [1, 1.1]
@{v) [1,1.01] v) [1, 1.001]
(b) Find the instantaneous velocity after one second.

7. The displacement (in feet) of a certain particle moving in
a straight line is given by s = £°/6, where ¢ is measured in

seconds. 2= i
1 ) L L an (b) Use a graph of the curve to explain why the slopes of the
() Flfld the average veloc'{ty over the following time periods: secant lines in part (a) are not close to the slope of the
@ [1,3] (i) [1,2] tangent line at P.
(i) [1, 1.5] @v) [1,1.1] (c) By choosing appropriate secant lines, estimate the slope of

(b) Find the instantaneous velocity when r = 1.

(c) Draw the graph of s as a function of ¢ and draw the secing
lines whose slopes are the average velocities found in
part (a).

(d) Draw the tangent line whose slope is the instantaneous
velocity from part (b).

8. The position of a car is given by the values in the table.

E (seconds) 0 1 2 3 4 5-

s e 0o | 10 | 32 7()} 19 | 1m

(a) Find the average velocity for the time period beginning
when ¢ = 2 and lasting
(1) 3 seconds (@ii) 2 seconds (i) 1 second
(b) Use the graph of s as a function of ¢ to estimate the instis:
taneous velocity when ¢ = 2.

i%é The point P(1, 0) lies on the curve y = sin(107/x).
(2) If Q is the point (x, sin(107r/x)), find the slope of the secs
line PQ (correct to four decimal places) for x = 2, 1.5, |
1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the sldpes
appear to be approaching a limit?

the tangent line at P.

Il 2.2 The Limit of a Function

Having seen in the preceding section how limits arise when we want to find the tangent
a curve or the velocity of an object, we now turn our attention to limits in general
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function f defined by f(x) = x2 — x + 2 for v
ues of x near 2. The following table gives values of f(x) for values of x close to 2, but 1

equal to 2.
y ]
x fx) x f)
T
1.0 2.000000 3.0 8.000000
Fx) i 2 1.5 2.750000 2.5 5.750000
approaches - 1.8 3.440000 22 4.640000
4. | ! 1.9 3.710000 2.1 4.310000 *
N | 1.95 3.852500 | 2.05 4.152500
| 1.99 3.970100 2.01 4030100
1 } 1.995 3.985025 2.005 4.015025
, 1.999 3.997001 2.001 4.003001
o o %
As x approaches 2,

From the table and the graph of f (a parabola) shown in Figure 1 we see that when « «

FIGURE 1 close to 2 (on either side of 2), f(x) is close to 4. In fact, it appears that we can make th
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values of f(x) as close as we like to 4 by taking x sufficiently close to 2. We express this
by saying “the limit of the function f(x) = x> — x + 2 as x approaches 2 is equal to 4.”
The notation for this is

linzl(xz—x+2)=4

In general, we use the following notation.

[ Definition We write

li_r)nf(x) =L

and say “the limit of f(x), as x approaches a, equals L”

if we can make the values of f(x) arbitrarily close to L (as close to L as we like)
by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Roughly speaking, this says that the values of f(x) get closer and closer to the number
L as x gets closer and closer to the number a (from either side of a) but x #* a. A more pre-
cise definition will be given in Section 2.4.

An alternative notation for

lim £(x) = L

is fx)— L as x—a

which is usually read “f(x) approaches L as x approaches a.”

Notice the phrase “but x * a” in the definition of limit. This means that in finding the
limit of f(x) as x approaches a, we never consider x = a. In fact, f(x) need not even be
defined when x = a. The only thing that matters is how f is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), f(a) is not defined
and in part (b), f(a) # L. But in each case, regardless of what happens at g, it is true that
lim,,f(x) = L.

@ ' (b) ©
QURE 2 lim f(x)=L in all three cases
.ox—1
EXAMPLE 1 Guess the value of 11n11 -
x> x° —
SOLUTION Notice that the function f(x) = (x — 1)/(x?> — 1) is not defined when x = 1,
but that doesn’t matter because the definition of lim,_,, f(x) says that we consider values
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x<1 fx
0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025
x> 1 fx)
1.5 0.400000

C 11 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

; Vi2+9 -3
e

+0.0005 0.16800
*0.0001 0.20000
*+0.00005 0.00000
*0.00001 0.00000

of x that are close to @ but not equal to a. The tables at the left give values of f(x)
(correct to six decimal places) for values of x that approach 1 (but are not equal to 1).
On the basis of the values in the tables, we make the guess that
-1
lim =—— =05

=l x2 — 1

Example 1 is illustrated by the graph of f in Figure 3. Now let’s change f slightly b
giving it the value 2 when x = 1 and calling the resulting function g:

-1
ad if x5 1

g(X)= x°—1
2 if x=1

This new function g still has the same limit as x approaches 1 (see Figure 4).

y : y
2T o
_x—1
y_xz—l y=gx)

05 +————= 0.5 +————=

r | 1 i

0 ] — x 0 ] — x

FIGURE 3 FIGURE 4
Vi2+9 -3

EXAMPLE 2 Estimate the value of ling D
t—

SOLUTION The table lists values of the function for several values of ¢ near 0.

r JEF9 -3

! ————tz
*1.0 0.16228
+0.5 0.16553
+0.1 0.16662
+0.05 0.16666
+0.01 0.16667

As t approaches 0, the values of the function seem to approach 0.1666666 . .. and so we ;

guess that
i VE+9-3 1 :
t-—l;% l‘2 B 6 =

In Example 2 what would have happened if we had taken even smaller values of #? Tt ‘
table in the margin shows the results from one calculator; you can see that something
strange seems to be happening. '
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If you try these calculations on your own calculator you might get different values, but
eventually you will get the value 0 if you make ¢ sufficiently small. Does this mean that
the answer is really O instead of :? No, the value of the limit is §, as we will show in the

@ next section. The problem is that the calculator gave false values because +/t? + 9 is very
close to 3 when ¢ is small. (In fact, when ¢ is sufficiently small, a calculator’s value for
J/t? + 9is3.000... to as many digits as the calculator is capable of carrying.)

Something similar happens when we try to graph the function

JE+9 -3

t2

4 dw ot further explanation of why calculators
wamwtones give false values, see the web site

~wstewartcalculus.com

-4 o0 Additional Topics and then on Lies f @ =
atvulator and Computer Told Me. In

iiar, see the section called The Perils of

T.”M setion. of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show quite
accurate graphs of f, and when we use the trace mode (if available) we can estimate eas-
ily that the limit is about é But if we zoom in too far, as in parts (c) and (d), then we get
inaccurate graphs, again because of problems with subtraction.

0.2 0.2 (
", “‘//‘
0.1 0.1

l |

() [~5, 5]by [-0.1,0.3]
HOURE 5

(b) [-0.1, 0.1] by [-0.1, 0.3]

(©) [-107%,107%] by [-0.1, 0.3]

sin x

EXAMPLE 3 Guess the value of liII(l) .

X

| J

(@) [-107%,107"] by [~0.1, 0.3]

SOLUTION The function f(x) = (sin x)/x is not defined when x = 0. Using a calculator

(and remembering that, if x € R, sin x means the sine of the angle whose radian mea-

sure is x), we construct the following table of values correct to eight decimal places.
From the table and the graph in Figure 6 we guess that

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument.

sinx

lim 1
x—0 X

sin x
X
X
*1.0 0.84147098 Y sin x
+0.5 0.95885108 1 Y=
+0.4 0.97354586 /\
+0.3 0.98506736
+0.2 0.99334665
+0.1 0.99833417 — 0 X
+0.05 0.99958339
+0.01 0.99998333 FIGURE 6
+0.005 0.99999583
+0.001 0.99999983 o
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lIl COMPUTER ALGEBRA SYSTEMS

Computer algebra systems (CAS) have commands
that compute limits. In order to avoid the types
of pitfalls demonstrated in Examples 2, 4, and 5,
they don't find limits by numerical experimen-
tation. Instead, they use more sophisticated
techniques such as computing infinite series. If
you have access to a CAS, use the limit command
to compute the limits in the examples of this
section and to check your answers in the exer-
cises of this chapter.

[@) but this time our guess is wrong. Note that although f(1/n) = sin nar = 0 for any integet :

Listen to the sound of this function trying to
approach a limit.
Resources / Module 2
/ Basics of Limits
/ Sound of a Limit that Does Not Exist

FIGURE 7
. Module 2.2 helps you explore limits at
Q points where graphs exhibit unusual
behavior.

. 5, CosdSx

10,000
1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

" approach a fixed number as x approaches 0,

EXAMPLE 4 Investigate 1in(1) sin 1.
x— X

SOLUTION Again the function f(x) = sin(sr/x) is undefined at 0. Evaluating the function
for some small values of x, we get

f(3) =sin27 =0

f(3)

£(0.01) = sin 1007 = 0

f(y=sinm=0

£(3)

£(0.1) = sin 107 = 0

=sin3r=0 sindmr =0

Similarly, £(0.001) = £(0.0001) = 0. On the basis of this information we might be
tempted to guess that

. . T
limsin— =20
x

x—0

n, it is also true that f(x) = 1 for infinitely many values of x that approach 0. [In fact,
sin(7r/x) = 1 when

1+2n7‘r
x 2 -

and, solving for x, we get x = 2/(4n + 1).] The graph of f is given in Figure 7.

y = sin(7/x)

————=

e

The dashed lines indicate that the values of sin(m/x) oscillate between 1 and —1
infinitely often as x approaches O (see Exercise 37). Since the values of f(x) do not

. . T .
lim sin — does not exist
x—0 X
cos 5x
10,000 /-

SOLUTION As before, we construct a table of values. From the table in the margin it

appears that
(x3 + ) =0

EXAMPLE 5 Find liII('% <x3 +

cos 5x

fim 10,000

x—0
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cos 5x But if we persevere with smaller values of x, the second table suggests that

10,000
» lim [ 52 + °8 Sx
0.005 0.00010009 10,000

x—0

3

X
1
10,000

) = 0.000100 =
a.001 0.00010000

Later we will see that lim,_.o cos 5x = 1; then it follows that the limit is 0.0001. iy

@ Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is
easy to guess the wrong value if we use inappropriate values of x, but it is difficult to know
when to stop calculating values. And, as the discussion after Example 2 shows, sometimes
calculators and computers give the wrong values. In the next two sections, however, we
will develop foolproof methods for calculating limits.

EXAMPLE 6 The Heaviside function H is defined by

0 if r<0
1 =
H() {1 ift=0

0] ! [This function is named after the electrical engineer Oliver Heaviside (1850-1925) and
can be used to describe an electric current that is switched on at time ¢ = 0.] Its graph is
fIGURE 8 shown in Figure 8.
As t approaches 0 from the left, H(f) approaches 0. As ¢ approaches 0 from the right,
H(z) approaches 1. There is no single number that H(z) approaches as ¢ approaches 0.
Therefore, lim,_.o H(f} does not exist. o

|||| One-Sided Limils

We noticed in Example 6 that H(f) approaches 0 as ¢ approaches 0 from the left and H(z)
approaches 1 as ¢ approaches O from the right. We indicate this situation symbolically by
writing

lilgl H({) =0 and li%l H@® =1

=0~ =0+

The symbol “r — 07" indicates that we consider only values of ¢ that are less than 0.
Likewise, “¢t — 07 indicates that we consider only values of ¢ that are greater than 0.

2] Definition We write
lim f(x) =L
and say the left-hand limit of f(x) as x approaches a [or the limit of f(x) as x

approaches a from the left] is equal to L if we can make the values of f(x) arbi-
trarily close to L by taking x to be sufficiently close to a and x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require x to be less
than a. Similarly, if we require that x be greater than a, we get “the right-hand limit of
f(x) as x approaches a is equal to L and we write

lim_f (x) =L
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Thus, the symbol “x — a*” means that we consider only x > a. These definitions are illus-
trated in Figure 9.

y ' y

) g L fix

Ol X — a x 0 a «— x X

FIGURE ¢ @ lim fix)=L (b)linl fx)=L

x—g

By comparing Definition 1 with the definitions of one-sided limits, we see that the fol-
lowing is true.

L lim f(x) =L ifandonlyif 1lim f(x) =L and lim_ f(x) =L

y EXAMPLE 7 The graph of a function g is shown in Figure 10. Use it to state the values

4 . (if they exist) of the following:
3 . . i
y=g(x) (2) lim 4(x) (b) lim 4(x) (© lim 4(x)

0 @lmg) @ lmgd (@ lime()
, )

SOLUTION From the graph we see that the values of g(x) approach 3 as x approaches 2
¥ from the left, but they approach 1 as x approaches 2 from the right. Therefore

FIGURE 10 : (a) lilgl_ glx) =3 and (b) lirg glx)y=1

(c) Since the left and right limits are different, we conclude from (3) that lim,—_.» g(x)
does not exist.

The graph also shows that
@ lirgl_ glx) =12 and (e) lirg glx) =2

(f) - This time the left and right limits are the same and so, by (3), we have
lin} glx) =2

Despite this fact, notice that g(5) # 2. s

|||| Infinite Limits

1
EXAMPLE 8 Find 1in(1) — if it exists.
x—=>0 X

SOLUTION As x becomes close to 0, xZ also becomes close to 0, and 1/x? becomes very :
large. (See the table on the next page.) In fact, it appears from the graph of the function §
f(x) = 1/x* shown in Figure 11 that the values of f(x) can be made arbitrarily large 4
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FIGURE 11
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by taking x close enough to 0. Thus, the values of f(x) do not approach a number, so
lim,—, (1/x2) does not exist.

TN

To indicate the kind of behavior exhibited in Example 8, we use the notation

lim—2 = ®
x—=0 X

@ This does not mean that we are regarding % as a number. Nor does it mean that the limit

wie wfinite limits interactively.

_ Resources / Module 2

4/ Limits that Are Infinite
/ Examples A and B

y=fix

ol

GURE 12

exists. It simply expresses the particular way in which the limit does not exist: 1/x* can be
made as large as we like by taking x close enough to 0.
In general, we write symbolically

lim f(x) = e

to indicate that the values of f(x) become larger and larger (or “increase without bound”)
as x becomes closer and closer to a.

Definition Let f be a function defined on both sides of a, except possibly at a
itself. Then

Lim f(x) = o

means that the values of f(x) can be made arbitrarily large (as large as we please)
by taking x sufficiently close to a, but not equal to a.

Another notation for lim,_., f(x) = o is
fx) > as x—a
Again the symbol « is not a number, but the expression lim,_,, f(x) = % is often read as
“the limit of f(x), as x approaches q, is infinity”
or “f(x) becomes infinite as x approaches a”
or “f(x) increases without bound as x approaches a”

This definition is illustrated graphically in Figure 12.
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C O\ e

FIGURE 13

lim f{x)=—co

A similar sort of limit, for functions that become large negative as x gets close to a, is
defined in Definition 5 and is illustrated in Figure 13.

i8] Definition Let f be defined on both sides of a, except possibly at a itself. Then

lim f(x) =

means that the values of f(x) can be made arbitrarily large negative by taking x
sufficiently close to a, but not equal to a.

The symbol lim,—., f(x) = — can be read as “the limit of f(x), as x approaches «,
is negative infinity” or “f(x) decreases without bound as x approaches a.”” As an example
we have

Similar definitions can be given for the one-sided infinite limits

lim f(x) = o lim f(x) = o
lim f(x) = —o lim f(x) = —o

remembering that “x — o™ means that we consider only values of x that are less than u, 3
and similarly “x — a*” means that we consider only x > a. Illustrations of these four §
cases are given in Figure 14.

@ lim f(x)=c

x—a

FIGURE 14

¥y ' y y
ol a \‘; 0 \a x ol a| ~/ v
(b) l{“&f flx)=o (©) lim f(x)=—o0 @ ll'IT{r flx)=—co

Definition The line x = a is called a vertical asymptote of the curve y = f(x)
if at least one of the following statements is true:

lim f(x) = o lim f(x) = liggf(x) =
lin f() ~ == lim f() =~ lim f() = —

For instance, the y—akis is a vertical asymptote of the curve y = 1/x* becausc ]
lim o (1/x*) = . In Figure 14 the line x = a is a vertical asymptote in each of the four
cases shown. In general, knowledge of vertical asymptotes is very useful in sketching §
graphs. :
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FIGURE 17
‘The y-axis is a vertical asymptote of
the natural logarithmic function.
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2 2
EXAMPLE 9 Find lim ——— and lim ———.
=3t x — 3 =3 x — 3
SOLUTION If x is close to 3 but larger than 3, then the denominator x — 3 is a small posi-
tive number and 2x is close to 6. So the quotient 2x/(x — 3) is a large positive number.
Thus, intuitively we see that
2x

m =
x—3t x — 3

Likewise, if x is close to 3 but smaller than 3, then x — 3 is a small negative number but
2x is still a positive number (close to 6). So 2x/(x — 3) is a numerically large negative

number. Thus

. 2x
lim = —o
x—3- X —

The graph of the curve y = 2x/(x — 3) is given in Figure 15. The line x = 3 is a verti-

cal asymptote. o

EXAMPLE 10 Find the vertical asymptotes of f(x) = tan x.

SOLUTION Because
sin x

tanx =
COS x

there are potential vertical asymptotes where cos x = 0. In fact, since cosx — 07 as
x— (7/2)” and cos x — 0~ as x — (7/2)", whereas sin x is positive when x is near
/2, we have
lim tanx = and Iim tanx = —x

x->(m/2)” x—>(m/2)*
This shows that the line x = 77/2 is a vertical asymptote. Similar reasoning shows
that the lines x = (2n + 1)@r/2, where n is an integer, are all vertical asymptotes of
f(x) = tan x. The graph in Figure 16 confirms this.

Another example of a function whose graph has a vertical asymptote is the natural log-
arithmic function y = In x. From Figure 17 we see that

lim Inx = —o0

x—07%

and so the line x = 0 (the y-axis) is a vertical asymptote. In fact, the same is true for
y = log, x provided that a > 1. (See Figures 11 and 12 in Section 1.6.)

)V

of /; %

y
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1] 2.2 Exercises

]
1. Explain in your own words what is meant by the equation
lin% f(x)=35

Is it possible for this statement to be true and yet f(2) = 37
Explain.

2. Explain what it means to say that
lil?_ fx)=3 and liIP+ fx)=17
In this situation is it possible that lim,—., f(x) exists? Explain.

3. Explain the meaning of each of the following.
(@ lim f(x) =0 ®) lim f() =~

For the function f whose graph is given, state the value of the
given quantity, if it exists. If it does not exist, explain why.

() lim £(x) ®) lim £(x)
(¢) lim fx) (@) lim f ()
(e) f3)
4 l
—4
L 1o —
N
0 2 4

5. Use the giv'en graph of f to state the value of each quantity,
if it exists. If it does not exist, explain why.

@ lm fx) &) lm f(x) () limf(x)
(@ lim f(x) e) f(5)

/|

6. For the function g whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.
@ lim g(x) () lim g(x) (¢) lim g(x)

(@) g(-2) (@) lim g(x)
(g) lim g(x) () ¢(2)
() lim g (&) 9(0)

() lim g(x)
@ lim g(x)
O lim g(x)

| }
/| B

7. For the function g whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.
@ lim g () limg()  (© limg()

(@ lim ¢(r) () lim g()  (f) lim g()
(2 92 (h) lim g(9)

8. For the function R whose graph is shown, state the following.
(a) lim R(x) (b) lim R(x)
() lim R(x) ({d) lm R(x)

(e) The equations of the vertical asymptotes.

\ y




% bor the function f whose graph is shown, state the following.

W lim f) ® lim () (© lm ()
«h lm fG) (@) lim f(x)
i!) The equations of the vertical asymptotes.
] y
JAL 1] \
J N1/
\ AT INA N
1741 13 o \L1 6 | x
\ [/
\If \
\ \

B A patient receives a 150-mg injection of a drug every 4 hours.
The graph shows the amount f(¢) of the drug in the blood-
stream after ¢ hours. (Later we will be able to compute the
dosige and time interval to ensure that the concentration of the
drug does not reach a harmful level.) Find

lim f(z) and

=127

Jim f()

and explain the significance of these one-sided limits.

1)

o\
\\\\

%L (e the graph of the function f(x) = 1/(1 + ¢'*) to state the
value of each limit, if it exists. If it does not exist, explain why.

t lim f(x) () lim f(x) () lim f(x)

¥ 3ketch the graph of the following function and use it to deter-

sine the values of a for which lim,_., f(x) exists:

2—x if x<—1
fx) =19x if —lsx<l1
(x—10 ifx=1
4 @ Sketch the graph of an example of a function f that
ks all of the given conditions.
Wt /() =4, lm f(x) =2, lm f(x) =2,
=3, f(-2)=1

@l /() =1, lim 00 = <1, Jim f() =0

jif\}_ [ =1, f@)=1, f£(0)is undefined

o a o o o o o a a
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15-18 i Guess the value of the limit (if it exists) by evaluating the
function at the given numbers (correct to six decimal places).

x?—2x
15, lim )
=2 xt—x—2

1.9, 1.95, 1.99, 1.995, 1.999

x=125,2.1,2.05,2.01, 2.005, 2.001,

2
-2
16. lim ————— x=0,-0.5, 09, —0.95, —0.99,
xm-1 x°—x— 2
~0.999, -2, —1.5, —1.1, =1.01, —1.001
7. lim et =X =21, %05, +0.1, £0.05, 2001

x—0 X

18. lijg+ xIn(x + x*), x=1,0.5,0.1, 0.05, 0.01, 0.005, 0.001

o o a a a a a L] a a o a

19-22 n Use a table of values to estimate the value of the limit.
If you have a graphing device, use it to confirm your result
graphically.

VJx+4-2 20 tan 3x

19. lim . lim

x—0 x x—0 tan 5x

6 __ 1 . x_ §*

2. lim ——— 22. lim >

=1 x° —1 x—=0 x
23-30 il Determine the infinite limit.
23. lim 24. lim 6

. i .

x=5t x — 5 x>5"x — 5
L 2—x ' x—1
25 lim— 26. lim ————
ey (x — 1) 20 xX(x + 2)

x—1 .

27. im xz(x—+2) 28. 11_1311;1_ csC X
29. lim secx 30. lim In(x — 5)

x—{—n/2)~ x—5+

o a a o o L] o o a a o o

1

st x3 — 1

1
31. Determine lim —; and
-1 x° — 1

(a) by evaluating f(x) = 1/(x* — 1) for values of x that
approach 1 from the left and from the right,
(b) by reasoning as in Example 9, and
M (c) from a graph of f.

Y

32. (a) Find the vertical asymptotes of the function

_ x
Y x2—x-2
an (b) Confirm your answer to part (a) by graphing the function.
3¢ (a) Estimate the value of the limit lim o (1 + )= to five
decimal places. Does this number look familiar?
(b) Ilustrate part (a) by graphing the function y = (1 + x)'/~.

[T

34. The slope of the tangent line to the graph of the exponential
function y = 2* at the point (0, 1) is lim,o (2 — 1)/x.
Estimate the slope to three decimal places.
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35. (a) Evaluate the function f(x) = x*> — (2*/1000) for x = 1,
0.8, 0.6, 04, 0.2, 0.1, and 0.05, and guess the value of

2X
o,
lim (" 1000)

(b) Evaluate f(x) for x = 0.04, 0.02, 0.01, 0.005, 0.003, and
0.001. Guess again.

36. (a) Evaluate A(x) = (tan x — x)/x> forx = 1, 0.5, 0.1, 0.05,

0.01, and 0.005.
t —
(b) Guess the value of Iin}) %.

(c) Evaluate h(x) for successively smaller values of x until you
finally reach 0 values for h(x). Are you still confident that
your guess in part (b) is correct? Explain why you eventu-
ally obtained O values. (In Section 4.4 a method for eval-
uating the limit will be explained.)

(d) Graph the function 4 in the viewing rectangle [—1, 1]
by [0, 1]. Then zoom in toward the point where the graph
crosses the y-axis to estimate the limit of k(x) as x
approaches 0. Continue to zoom in until you observe distor-
tions in the graph of k. Compare with the results of part (c).

37. Graph the function f(x) = sin(#/x) of Example 4 in the view=
ing rectangle [—1, 1] by [—1, 1]. Then zoom in toward the
origin several times. Comment on the behavior of this functiom

38. In the theory of relativity, the mass of a particle with velocity
vis
o

"= e

where my is the rest mass of the particle and c is the speed of
light. What happens as v — ¢7?

39. Use a graph to estimate the equations of all the vertical asymp~
totes of the curve

y = tan(2 sin x) -T<xsT

Then find the exact equations of these asymptotes.
[1@06: (a) Use numerical and graphical evidence to guess the value of

the limit
2 -1

x=1 4/x — 1

(b) How close to 1 does x have to be to ensure that the function '?
in part (a) is within a distance 0.5 of its limit? :

[ 2.3 _Calculating Limits Using the Limit Laws

In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw that
such methods don’t always lead to the correct answer. In this section we use the following 3
properties of limits, called the Limit Laws, to calculate limits.

exist. Then

Limit Laws Suppose that ¢ is a constant and the limits

1 lim [f(x) + g(x)] = lim f(x) + lim g(x)
2. lim [f(x) — ¢(x)] = lim f(x) — lim g(x)
3. lim [cf(x)] = clim f(x)

4. lim [ f(x)g(x)] = lim f(x) - lim g(x)

f  lmfQ)

lim f(x) and lim g(x)

5. lim

e gl)  limg(x)

if lim g(x) # 0
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These five laws can be stated verbally as follows:

Sum Law 1. The limit of a sum is the sum of the limits.

Difference Law 2. The limit of a difference is the difference of the limits.

Constant Multiple Law 3. The limit of a constant times a function is the constant times the limit of the
function.

Product Law 4. The limit of a product is the product of the limits.

Quotient Law 5. The limit of a quotient is the quotient of the limits (provided that the limit of the

denominator is not 0).

It is easy to believe that these properties are true. For instance, if f(x) is close to L and
g(x) is close to M, it is reasonable to conclude that f(x) + g(x) is close to L + M. This gives
us an intuitive basis for believing that Law 1 is true. In Section 2.4 we give a precise def-
inition of a limit and use it to prove this law. The proofs of the remaining laws are given
in Appendix F.

Y ‘ EXAMPLE 1 Use the Limit Laws and the graphs of f and g in Figure 1 to evaluate the
~ following limits, if they exist.

A . :  f@)
@ lim [f(x) + 54(x)] (®) lim [£(x)g(»)] (© lim= >

it SOLUTION
(a) From the graphs of f and g we see that

o lim f(x) =1 and lim g(x) = —1
I“"“E ] x—>—2f x——2 g

Therefore, we have

lin_l2 [f(x) + 5g9(x)] = lin_12 fix) + lin_l2 [5g(x)] (by Law 1)
= lin_12 fx)+5 lin_l2 g(x) (by Law 3)

=1+5-1)=—4
(b) We see that lim,_,; f(x) = 2. But lim,_,; g(x) does not exist because the left and
right limits are different:
lirP_ glx) = —2 1i1111+ glx) = —1
So we can’t use Law 4. The given limit does not exist, since the left limit is not equal to
the right limit.
(c) The graphs show that
ling flx)=14 and - lin% gx) =0
Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not

exist because the denominator approaches O while the numerator approaches a nonzero
number. B

If we use the Product Law repeatedly with g(x) = f(x), we obtain the following law.

(%4

Power Law 6. im[f(x)]" = [ﬁm f (x)]" where n is a positive integer
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Root Law

Explore limits like these interactively.
Resources / Module 2
/ The Essential Examples
/ Examples D and E

In applying these six limit laws, we need to use two special limits:

7. imc=¢ 8. limx =a

x—a x—>a

These limits are obvious from an intuitive point of view (state them in words or draw
graphs of y = ¢ and y = x), but proofs based on the precise definition are requested in th

exercises for Section 2.4.
If we now put f(x) = x in Law 6 and use Law 8, we get another useful special limit

9. lim x" = qa” where 7 is a positive integer

Xx—>a

A similar limit holds for roots as follows. (For square roots the proof is outlined in Excr
cise 37 in Section 2.4.)

10. lim &/x = &/a where n is a positive integer
x—a

(If n is even, we assume that a > 0.)

More generally, we have the following law, which is proved as a consequence of Law
in Section 2.5.

1. lim ¢/f(x) = lim f(x) where n is a positive integer

[If n is even, we assume that lim f(x) > O.]

EXAMPLE 2 Evaluate the following limits and justify each step.
2 +2xr -1

li 2 + b) li

(a) lim (2x* = 3x + 4) (b) lim 53y

SOLUTION

(a) lin} Q2x*—3x+4) = ling 2x%) — lin} (3x) + lin}4 (by Laws 2 and 1)
=21in}x2—3limx+1in}4 (by 3)
=2(5)-305) +4 (by 9, 8, and 7)

=39

(b) We start by using Law 5, but its use is fully justified only at the final stage when we ‘
see that the limits of the numerator and denominator exist and the limit of the denomina- §

tor is not Q.




"+ 'WTON AND LIMITS

+ Newton was born on Christmas Day in
t. the year of Galileo’s death. When he
«+s| Cambridge University in 1661 Newton

-t know much mathematics, but he learned

-+!y by reading Euclid and Descartes and
: 1twending the lectures of Isaac Barrow.
+:ulge was closed because of the plague in
~ antl 1666, and Newton returned home to
-+ on what he had leamed. Those two years
«rs amazingly productive for at that time he
e four of his major discoveries: {1) his

+r==ontation of functions as sums of infinite
«+ . ncluding the binomial theorem; (2] his
=ert a0 differential and integral calculus; {3} his

«: +{ motion and law of universal gravitation;
=« A1 his prism experiments on the nature of

i - and color. Because of a fear of controversy
ucism, he was reluctant to publish his dis-
5 and it wasn't until 1687, at the urging of
+xtronomer Halley, that Newton published
«it Mathematica. In this work, the greatest
Aihe treatise ever written, Newton set forth
ee50n of caleulus and used it to investigate
-nics, fluid dynamics, and wave motion,
«xplain the motion of planets and comets.
“=a: bginnings of calculus are found in the
tiuns of areas and volumes by ancient
«cholars such as Eudoxus and Archimedes.
1 aspects of the idea of a limit are

1 their “method of exhaustion,” Eudoxus
# A uinedes never explicitly formulated the
gt of a limit. Likewise, mathematicians
: (.avalieri, Fermat, and Barrow, the imme-
sencursors of Newton in the development
#us, did not actually use limits. It was

N

—_

»uts. He explained that the main idea
nits is that quantities “approach nearer
fe any given difference.” Newton stated

s Mas init was the basic concept in calculus,
weas faft to later mathematicians like

iy t0 clarify his ideas about limits.
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. B2 —1 xlin_lz P +2x2-1) oy Lew 5
m = aw
-2 5 —3x lim (5~ 3%) Y
lim x> +211mx — lim 1
= 2222 o2 £l (by 1,2, and 3)
111{12 5-3 11111 x
(=2 + 2(=27 — 1
= by 9, 8, and 7
5 - 3(-2) by, 8 and )
_ 1

NOTE = If we let f(x) = 2x? — 3x + 4, then f(5) = 39. In other words, we would have
gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct substi-
tution provides the correct answer in part (b). The functions in Example 2 are a polyno-
mial and a rational function, respectively, and similar use of the Limit Laws proves that
direct substitution always works for such functions (see Exercises 53 and 54). We state this
fact as follows.

Direct Substitution Property If f is a polynomial or a rational function and a is in the
domain of f, then

lim f(x) = f(a)

Functions with the Direct Substitution Property are called continuous at a and will be
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as
the following examples show.

X% —
EXAMPLE 3 Find hm 1 .
x—=1 x —
SOLUTION Let f(x) = (x* — 1)/(x — 1). We can’t find the limit by substituting x = 1
because f(1) isn’t defined. Nor can we apply the Quotient Law because the limit of the
denominator is 0. Instead, we need to do some preliminary algebra. We factor the numer-
ator as a difference of squares:

x—Dx+1)
x—1

=1

x—1

The numerator and denominator have a common factor of x — 1. When we take the limit
as x approaches 1, we have x # 1 and so x — 1 # 0. Therefore, we can cancel the com-
mon factor and compute the limit as follows:

CoxP—1 x—D+1)

lim = lim

=1l x—1 x—1 x—1
=1in}(x+1)
=14+1=2

The limit in this example arose in Section 2.1 when We were trying to find the tangent to
the parabola y = x? at the point (1, 1). _
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FIGURE 2
The graphs of the functions f (from
Example 3) and g (from Example 4)

Explore a limit like this one interactively.
g Resources / Module 2
/ The Essential Examples
/ Example C

NOTE - In Example 3 we were able to compute the limit by replacing the given func-
tion f(x) = (x* — 1)/(x — 1) by a simpler function, g(x) = x + 1, with the same limit,
This is valid because f(x) = g(x) except when x = 1, and in computing a limit as x
approaches 1 we don’t consider what happens when x is actually equal to 1. In general,
if f(x) = g(x) when x # g, then

lim £(x) = lim g(x)

EXAMPLE 4 Find linll g(x) where

) = x+1 if x#1
g T if x=1

SOLUTION Here g is defined at x = 1 and g(1) = , but the value of a limit as x _
approaches 1 does not depend on the value of the function at 1. Since g(x) = x + 1 for ;_

x # 1, we have
lin} g(x) = lin} x+1)=2

Note that the values of the functions in Examples 3 and 4 are identical except whea?
x = 1 (see Figure 2) and so they have the same limit as x approaches 1. 3

+ h)* —
EXAMPLE 5 Evaluate lim (i_h)__9_
h—0 h
SOLUTION If we define
3+h)2—-9
PORRCEL B

then, as in Example 3, we can’t compute lim;_.o F(h) by letting & = 0 since F(0) is
undefined. But if we simplify F(k) algebraically, we find that
(O+6r+h)—9 6h+hH

h) = = =6+h
F(h) P P

(Recall that we consider only & 5= () when letting & approach 0.) Thus
3+ 879
limL—)——= lim(6+ h) =6
h h—0

h—0

V2 +9 -3

EXAMPLE 6 Find lin(} ;2
t—

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the denomina- §
tor is 0. Here the preliminary algebra consists of rationalizing the numerator:

m—s_l, VE+9-3 JP+9+3

tim P P 7 /943
=1 @+9-9 im 2
0 (JIEF O+ 3) im0 12 + 9 + 3)
i 1 1 _

1
6

= = =
0 J T 0 + 3 Jim @+ 9 +3  3+3

This calculation confirms the guess that we made in Example 2 in Section 2.2.
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shown in Example 3 in
that lim ;¢ vx = 0.
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Some limits are best calculated by first finding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 2.2. It says that a two-sided
limit exists if and only if both of the one-sided limits exist and are equal.

L Theorem lim f(x) = L if and only if lim f(x) =L = lim f (x)

When computing one-sided limits, we use the fact that the Limit Laws also hold for
one-sided limits.

EXAMPLE 7 Show that lim |x| = 0.

SOLUTION Recall that

x| = x ifx=0
—x if x<0
Since | x| = x for x > 0, we have

lim x| = lim x=0
x—=0t x—0+
For x < 0 we have |x| = —x and so

lim |x| = lim (-x) =0
x—0~ x—=0~

Therefore, by Theorem 1,

lim x| =0
x—0 [
. Ixl )
EXAMPLE 8 Prove that hn(l) —— does not exist.
x=0 X
SOLUTION tim 5L = fim % = fim 1= 1
x—0t x x—0t x x—0t
tim 22— i =F — im (-1) = —1
x—0" X x—=0" X x—0"
Since the right- and left-hand limits are different, it follows from Theorem 1 that
lim, o | x|/x does not exist. The graph of the function f(x) = |x|/x is shown in
Figure 4 and supports the one-sided limits that we found. =

EXAMPLE 9 If

x
8§ —2x ifx<4

f(x)#{,/ —4 ifx>4

determine whether lim, .4 f(x) exists.

SOLUTION Since f(x) = +/x — 4 for x > 4, we have

lir?+f(x)= liI?+Jx—4=J4—4=O
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FIGURE 5

Il Other notations for [x] are [x] and L.x].

Yy
4+ *—0
3 *—-o
2 — y=[x]
1+ *—o
Of 1 2 3 4 5 *
*—>

—

FIGURE 6

Greatest integer function

X

]

FIGURE 7

Since f(x) = 8 — 2x for x < 4, we have

lim f(x) = lim 8 —2x) =8 —2-4=0

The right- and left-hand limits are equal. Thus, the limit exists and
lin} fx)=0
The graph of f is shown in Figure 5.

EXAMPLE 10 The greatest integer function is defined by [x] = the largest integer
that is less than or equal to x. (For instance, [4] = 4, [4.8] = 4, [#] = 3, [[\/5 ]] =1,
[[—%]l = —1.) Show that lim,_; [x] does not exist. :

SOLUTION The graph of the greatest integer function is shown in Figure 6. Since [x] = 3
for 3 < x < 4, we have

Jim I — li 3 =3
Since [[x] = 2 for 2 < x < 3, we have

Jim 1 = Jlip 2 =2
Because these one-sided limits are not equal, lim,—.3 [x] does not exist by Theorem 1.

The next two theorems give two additional properties of limits. Their proofs can b
found in Appendix F.

2] Theorem If f(x) < g(x) when x is near a (except possibly at a) and the limits
of f and g both exist as x approaches a, then

lim f(x) =< lim g(x)

The Squeeze Theorem If f(x) < g(x) < h(x) when x is near a (except possibly
at a) and

lim f(x) = lim h(x) = L

then lim g(x) = L

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the
Pinching Theorem, is illustrated by Figure 7. It says that if g(x) is squeezed between f(:i
and h(x) near a, and if f and h have the same limit L at a, then g is forced to have the same
limit L at a.
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1
EXAMPLE 11 Show that liné x?sin— = 0.
x— X

SOLUTION First note that we cannot use

) .1 . o1
lim x2sin — = lim x? - lim sin —
x

x—0 X x—0 x—0
because lim .o sin(1/x) does not exist (see Example 4 in Section 2.2). However, since

1

—l=ssin—=1

we have, as illustrated by Figure 8,

.1
. o y=x%sin 3
tch an animation of a similar limit.
Resources / Module 2
/ Basics of Limits x

/ Sound of a Limit that Exists

FIGURE 8

We know that

limx?=0 and lim (—x2?) =20

x—0 x—0

Taking f(x) = —x2 g(x) = x?sin(1/x), and A(x} = x? in the Squeeze Theorem, we
obtain

1
lim x%sin—=0

x—0 b [
Il 2.3 Exercises
HYt
Y, Given that (© 1im JR0D @ lim-—i—
limf(x) = =3 limgx)=0 limh(x) =8 L e x—a f(x)
find the limits that exist. If the limit does not exist, explain (e) Iim fx) @) lim M
why. x=a h(x) x=a f(x)
. . 2 ‘ . fx) . 2f(x)
(a) lim [£(x) + h(x)] (b) lim [£(x)] () lim 0 (h) lim ")~ f0)
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2. The graphs of f and g are given. Use them to evaluate each

limit, if it exists. If the limit does not exist, explain why.

J y

y

y= gl(x)/

/T ]

Ty

@ lim[f(x) + g(x)]

(©) lim [f(x)g(x)]

(e) li_Ig x3f(x)

3-9 i Evaluate the limit and justify each step by indicating the

appropriate Limit Law(s).
3 lim Gx*+ 22 —x+ 1)

x—-2

5. lm% (=D +5x—-1)

7.1 1+ 3x 3
M\ T+ 42 + 3
9. lim /16— =2

a a o ° o o

() Lim[f(x) + g(x)]

. f®)
@ lim 9(x)

) lim 3+

2%+ 1
4, lim——————
Jlrl—r>[%x2+6x—4

6. liml (22 + 1Pt + 3y
1——

B lim Jut+3u+6

u—=

© © o o

10. (a) What is wrong with the following equation?

*+x—6

(b) In view of part (a), explain why the equation

lim

x—2 X —

is correct.

*+x—6

=lin%(x+3)

11~30 un Evaluate the limit, if it exists.

2
x“+x—6
1. lim————
x—2 x-—2

2 A
-x+
13. i S —* 1+ 6

x—2 x—2

45 lim il
L2+ e+ 3

+ n)? -
17. lim —(4 ") 16
h—0 h
4 _
19, im AEA 1
h—0 h

. x*+5x+4
12 xlin—l4 ¥+ 3x—4
x? — 4x
14. im ———
?Ex2—3x—4
x? — 4x
16. lim ——
x—>n—1\x2~‘3x—4
Cox -1
la.ll_l)l}xz_l
_ 2+h)*-8
2@;11“1#_
h—0 h

21.

23. lim

1 32.

A 34.

36.

7

37.

38.

39-44 m Find the limit, if it exists. If the limit does not exist,
explain why.

. Use the Squeeze Theorem to show that

Lm [x+ 4|
x—>—4

L p—— 2m

v1i+h—1
h

4 __
2, lim 16
x—2 X —

(a) Estimate the value of

. x
:lcl—rr%\/1+3x—1

by graphing the function f(x) = x/(v/1 + 3x — 1).

(b) Make a table of values of f(x) for x close to 0 and guess
the value of the limit.

(c) Use the Limit Laws to prove that your guess is correct.

(a) Use a graph of

sy = LFES

to estimate the value of lim,_, , f(x) to two decimal places
(b) Use a table of values of f(x) to estimate the limit to four ;
decimal places.
(¢) Use the Limit Laws to find the exact value of the limit.

lim,_,, x* cos 207x = 0. Illustrate by graphing the functions
f(x) = —x2, g(x) = x* cos 207x, and h(x) = x? on the samc
screen.

Use the Squeeze Theorem to show that

LT
lim /x® + x2sin— =0
x

x—0

Tllustrate by graphing the functions f, g, and 4 (in the notation
of the Squeeze Theorem) on the same screen.

If1<f(x)<x*+ 2x + 2 forall x, find lim,_, _, f(x).

If 3x < f(x) < x> + 2 for 0 < x < 2, evaluate lim__,, f(x).
2
Prove that lim x*cos — = 0.
x—0 X

Prove that ]j1(1’1+ Vx et = g
x—

4
w0, um 24
-4 x+ 4




x-2
L lim————
‘ .rl—l}} x—2

amG—L)
=07\ X | X |

a o a 3 o o

2x? — 3x
42. lim ——
s [2x - 3]

Mme_g
=0t \x [x]

o 3 o a a

45. The signum (or sign) function, denoted by sgn, is defined by

-1 ifx<0
sgnx = 0 ifx=0
1 ifx>0

(a) Sketch the graph of this function.
(b) Find each of the following limits or explain why it does not
exist.
@) Xlin3+ sgn x

(i) li%m_ sgn x
(iii) lir% sgn x (@iv) ling | sgn x|

46, Let

4 -5 ifx=s2
f(x)_{x—l if x> 2

(2) Find lim,—,- £(x) and lim,,* f(x).

(b) Does lim ., f(x) exist?

(c) Sketch the graph of f.

2
-1

i, Let F(x) = ——.
lx = 1]
(a) Find

@) lirP+ F(x)
(b) Does lim, _, , F(x) exist?
(c) Sketch the graph of F.

i) lim F(x)

48, Let
x fx<O
h(x) = ¢ x* fo<x=2
8—x if x>2

(a) Evaluate each of the following limits, if it exists.
@) lilg)l+ h(x) (ii) lin}) h(x) (iii) lin} h(x)

@iv) lir?_ h(x) W) lif;l+ h(x) (vi) 1111% h(x)

(b) Sketch the graph' of h.
¥ (2) If the symbol [ ] denotes the greatest integer function
gr 2

defined in Example 10, evaluate

® lm [ G) lim [4
(b) If n is an integer, evaluate

(@ lim [x] (1) lim [x]
(c) For what values of a does lim

$0. Let f(x) = x — [x].
(a) Sketch the graph of f.—

(i) lim [x]

[x] exist?

x—a
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(b) If n is an integer, evaluate
() lm f(x) (i) lim f(x)
(c) For what values of a does lim,—_., f(x) exist?
51. If f(x) = [x] + [—x], show that lim, _,, f(x) exists but is not
equal to f(2).

52. In the theory of relativity, the Lorentz contraction formula
L= Ly\/1 — v¥c?

expresses the length L of an object as a function of its velocity
v with respect to an observer, where L, is the length of the
object at rest and c is the speed of light. Find lim,_, - L and
interpret the result. Why is a left-hand limit necessary?

53

54. If ris a rational function, use Exercise 53 to show that
lim,_,, r(x) = r{a) for every number a in the domain of 7.

55. If

If p is a polynomial, show that lim _,, p(x) = p(a).

if x is rational

flx) = {x

0 if xis irrational
prove that lim, .o f(x) = 0.

¢ Show by means of an example that lim__, , [ f(x) + g(x)] may
exist even though neither lim, _, , f(x) nor lim, _, , g(x) exists.

57. Show by means of an example that lim,_, , [ f(x)g(x}] may exist
even though neither lim, _, , f(x) nor lim,_, , g(x) exists.

x—>a

%9: Is there a number a such that

x2+ax+a+3
x+x—2

lim

_ x—=2

exists? If so, find the value of a and the value of the limit.

~ . 60. The figure shows a fixed circle C, with equation

(x — 1> + y? = 1 and a shrinking circle C, with radius r and
center the origin. P is the point (0, r), Q is the upper point of
intersection of the two circles, and R is the point of intersection
of the line PQ and the x-axis. What happens to R as C, shrinks,
that is, as r —> 077

y
P

G,




