
CHAPTER 1

Numbers, proof and ‘all that jazz’.

There is a fundamental difference between mathematics and other
sciences. In most sciences, one does experiments to determine laws.
A “law” will remain a law, only so long as it is not contradicted
by experimental evidence. Newtonian physics was accepted as valid
until it was contradicted by experiment, resulting in the discovery of
the theory of relativity.

Mathematics, on the other hand, is based on absolute certainty.
A mathematician may feel that some mathematical law is true on
the basis of, say, a thousand experiments. He/she will not accept
it as true, however, until it is absolutely certain that it can never

fail. Achieving this kind of certainty requires constructing a logical
argument showing the law’s validity–i.e. constructing a proof.

There is, however, a problem with the notion that everything
should be proved. If we insist on proving everything then we initially
know nothing, and, if we know nothing, how can we prove anything?
We have no place to begin. Clearly, we must have some body of
information that we know to be true on which to base our proofs.

So what can we assume known and what must be proved? Before
the time of Euclid, the answer to this question was personal and
subjective. You were allowed to assume anything that you could
bully your listener into believing. If I could get you to agree that all
integers are even (which is false) I could use it to prove all sorts of
other wonderful (and equally false) things. This often led to many
mistakes, so much so that it was very difficult to know what was true
and what was not.

Euclid solved this problem for geometry by stating an explicit
collection of “self evident” properties (called axioms) which were as-
sumed without proof. Furthermore, the axioms are the only properties

that were to be assumed without proof. All other properties must be
proved using either the axioms or their consequences.
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Since the time of Euclid, lists of axioms for many fields of math-
ematics, such as set theory, logic, and numbers have been compiled.
In these notes, we present one of the standard lists of axioms for the
real numbers, which are the numbers used in calculus. Thus, we are
stating “up front,” those properties that we are allowed to assume
without proof. As will be seen, the list is rather long and will be cov-
ered over several sections. We begin with the field axioms, which
describe those properties of numbers that do not relate to inequalities.

In principle, every number fact we use should be proved using
only our axioms. In fact, in these notes, we usually adopt a much
looser standard. As the reader will see, proving everything directly
from the axioms would take so long that we would never progress
beyond this section! It is, however, important that the reader prove
a number of basic number facts using only the axioms in order to
appreciate their significance.

Before stating the number axioms, we state some properties of
equality. These are not number axioms since they apply to things
other than numbers, e.g. triangles, circles, functions, chairs, etc.
They are really axioms of logic. We take these properties as given
and do not typically indicate their use in our proofs. This is not to
say that they are unimportant. For example, it is (EQ2) that allows
us to write the distributive law (D1) as

ab + ac = a(b + c)

instead of

a(b + c) = ab + ac

which justifies factoring a out of ab + ac.

Properties of Equality

EQ1: (Identity) For all a, a = a.
EQ2: (Reflexive) If a = b, then b = a.
EQ3: (Transitive) If a = b and b = c, then a = c.

The Field Axioms for the Real Numbers

Axioms for Addition

A0: (Existence of Addition) Addition is a well defined process
which takes pairs of real numbers a and b and produces from
then one single real number a + b.
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A1: (Associativity) If a, b, and c are real numbers, then

a + (b + c) = (a + b) + c.

A2: (Additive Identity) There is a real number 0 such that for
all real numbers a

a + 0 = a.

A3: (Additive Inverse) For every real number a there is a real
number −a such that

a + (−a) = 0.

A4: (Commutativity) If a and b are any real numbers, then

a + b = b + a.

Axioms for Multiplication

M0: (Existence of Multiplication) Multiplication is a well de-
fined process which takes pairs of real numbers a and b and
produces from then one single real number ab.

M1: (Associativity) If a, b, and c are any real numbers, then

a(bc) = (ab)c.

M2: (Multiplicative Identity) There is a real number 1 such
that for all real numbers a

a1 = a.

M3: (Multiplicative Inverse) For every real number a 6= 0,
there is a real number a−1 such that

aa−1 = 1.

M4: (Commutativity) If a and b are any real numbers, then

ab = ba.

Other Laws

D: (Distributive) For all real numbers a, b, and c,

a(b + c) = ab + ac.

Z: (Non-triviality) 0 6= 1
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Notice that the axioms mention neither subtraction nor division.
This is because they may be expressed using addition and multipli-
cation:

Definition 1. Let a and b be numbers. We define

a − b = a + (−b)
a

b
= ab−1 (b 6= 0)

Example 1. Solve the following equality for x in a step-by-step
manner, listing all of the axioms that you use.

3x + 5 = 12

Solution: We begin by adding −5 to both sides of the equality.
Axiom (A3) guarantees the existence of the negative of any number.
Axiom (A0) guarantees that adding −5 to both sides preserves the
equality. We proceed as follows.

3x + 5 = 12

(3x + 5) + (−5) = 12 + (−5) (A3), (A0)

3x + (5 + (−5)) = 7 (A1)

3x + 0 = 7 (A3)

3x = 7 (A2)

Next we would like to divide both sides by 3. This is the same
as multiplying by 1/3. 1/3 exists due to (M3) and multiplication
preserves the equality due to (M0). Hence:

1

3
(3x) =

7

3
(M0), (M3)

(
1

3
3)x =

7

3
(M1)

1x =
7

3
(M3), (M4)

x =
7

3
(M2), (M4)

We needed to use (M4) (Commutativity) in the third step be-
cause the (M3) tells us only that aa−1 = 1, and not that a−1a = 1.
Similarly, we needed (M4) in the last step because (M2) tells us only
that a1 = a.
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Conversely, if x = 7

3
,

3x + 5 =
3 · 7
3

+ 5 = 12

showing that x = 7

3
does indeed solve the equality.

Remark: The last step in our solution, checking that x = 7/3 is a
solution, was necessary. Our first sequence of equalities proved only
that if x is a solution, then x = 7/3. It did not prove that 7/3 actually
is a solution.

Many familiar number properties do not appear in our axiom list.
This is because they can be proved from the axioms. The following
list contains some of the more common ones. These properties

are not axioms: they are consequences of the axioms. We
will leave most of the proofs to you.

Theorem 1. Let a, b, and c be real numbers. Then

C1: (a + b)c = ac + bc.
C2: 0a = 0
C3: −a = (−1)a.
C4: −(ab) = (−a)b = a(−b).
C5: −(−a) = a.
C6: If a 6= 0 6= b, then (ab)−1 = a−1b−1.

C7: (a−1)−1 = a.
C8: −(a + b) = (−a) + (−b).

Example 2. Prove (C2).

Solution: We note that

(1)

a + 0 · a = 1 · a + 0 · a (M2), (M4)

= (1 + 0)a (C1)

= 1 · a (A2)

= a (M2), (M4)

Hence

a + 0 · a = a

We solve this equation for a · 0:
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(2)

(−a) + (a + 0 · a) = −a + a = 0 (A0), (A3), (A4)

((−a) + a) + 0 · a = 0 (A3), (A1)

0 + 0 · a = 0 (A2), (A3), (A4)

0 · a = 0 (A2), (A4)

Example 3. Find all solutions to the following in a step-by-step
manner, listing all of the properties that you use.

2x + 1

x
= 3

Solution: Suppose that x satisfies our equality. From the definition
of fractions, this is equivalent with

(2x + 1)x−1 = 3

Our solution proceeds as follows:

((2x + 1)x−1)x = 3x (M0)

(2x + 1)(x−1x) = 3x (M1)

(2x + 1)1 = 3x (M3), (M4)

2x + 1 = 3x (M2)

Next, we would like to cancel 3x by adding −3x to both sides of the
equation. If we do something to one side of an equality, we must do
exactly the same thing to the other side. Thus, we add −3x to
the left of each side:

−(3x) + (2x + 1) = −(3x) + 3x (A0), (A3)

= 0 (A4), (A3)
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We finish the computation:

(−(3x) + 2x) + 1 = 0 (A1)

((−3)x + 2x) + 1 = 0 (C4)

((−3) + 2)x + 1 = 0 (C1)

(−1)x + 1 = 0 Number Fact1

−x + 1 = 0 (C3)

x + (−x + 1) = x + 0 (A0)

(x + (−x)) + 1 = x (A1), (A2)

0 + 1 = x (A3)

1 = x (A2), (A4)

1

Conversely, if x = 1,

2x + 1

x
=

2 · 1 − 1

1
= 1

showing that x = 1 does indeed solve the equality.

Clearly, putting in every step can be quite tedious, even in a
simple calculation as in Example 3. Fortunately, it is not essential
that you develop great skill at doing more complicated examples.
The point here is only to stress that all of the computations done in

elementary algebra can all be justified using only the axioms for the

real numbers.

The next example demonstrates the necessity for checking the
solution.

Example 4. Find all solutions to the following equality

x =
√

2 − x

You need not indicate all of your steps.

1Example 6 demonstrates how to prove such “number facts”.
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Solution: We reason as follows. Suppose x satisfies the given in-
equality. Then

x =
√

2 − x

x2 = 2 − x

x2 + x − 2 = 0

(x − 1)(x + 2) = 0

Hence, either x = 1 or x = −2. If x = 1
√

2 − x =
√

1 = x.

However, if x = −2
√

2 − x =
√

4 = 2 6= x.

Hence the only solution is x = 1.

Remark: The symbol
√

a, by definition, is the positive square root.
Hence

√
4 = 2, not ±2.

The axioms only discuss addition of pairs of numbers. We define
addition of triples by

a + b + c = (a + b) + c

which, from the associative law, is the same as a + (b + c). We define
the sum of four numbers by

a + b + c + d = (a + b + c) + d

You will prove in the exercises that

(a + b + c) + d = (a + b) + (c + d) = a + (b + c + d)

Hence, the sum is the same no matter how we group the terms.
Similar comments apply to adding n numbers.

Definition 2. If a1, a2, . . . , an are n numbers, then we define

a1 + a2 + · · · + an = (a1 + a2 + · · · + an−1) + an.

This is a recursive definition, in that it defines the sum n num-
bers, assuming that we already know how to sum n − 1 numbers.
Thus, for example, it defines

a + b + c + d + e = (a + b + c + d) + e
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where

a + b + c + d = (a + b + c) + d.

We define the product of n numbers similarly:

Definition 3. If a1, a2, . . . , an are n numbers, then we define

a1 a2 . . . an = (a1 a2 . . . an−1) an.

You will prove specific instances of the following theorem in the
exercises. By “grouping” we refer to the manner in which parentheses
are put into the sum.

Theorem 2. The sum and product of n numbers are independent

of both the order and the grouping of the terms.

Theorem 2 covers all applications of both the commutative and
associative laws in solving equalities.

Example 5. Solve the following equality listing all of your steps.

4x − 9 = x − 2

Solution: Assume that x satisfies the given equality. Then

4x − 9 + (−x) + 9 = x − 2 + (−x) + 9 (A0)

4x + (−x) + 9 + (−9) = x + (−x) + 9 + (−2) (Thm. 2)

4x + (−1)x + 0 = 0 + 7 (A3), (C3)

(4 + (−1))x = 7 (A2), (C1)

3x = 7

The solution now proceeds exactly as at the end of Example 1 on
page 8.

Theorem 2 allows us to prove some number facts that the reader
learned in grade school. We define

2 = 1 + 1

3 = 2 + 1

4 = 3 + 1

5 = 4 + 1

. . .
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The set N of natural numbers is, by definition, the numbers
obtainable by adding 1 to itself any number of times. Thus,

N = {1, 2, 3, 4, . . . }

Example 6. Prove that

(a) 2 · 2 = 4

(b) − 3 + 2 = −1

Solution:

Part (a):

2 · 2 = (1 + 1)(1 + 1) Def. of 2

= 1(1 + 1) + 1(1 + 1) (C1)

= (1 + 1) + (1 + 1) (M2), (M4)

= 2 + (1 + 1) Def. of 2

= (2 + 1) + 1 (A1)

= 3 + 1 Def. of 3

= 4 Def. of 4

Part (b):

−3 + 2 = −(2 + 1) + 2 Def. of 3

= −(1 + 2) + 2 (A4)

= ((−1) + (−2)) + 2 (C8)

= −2 + ((−2) + 2) (A1)

= −2 + 0 (A4), (A3)

= −2 (A2)

Example 7. Prove that for real numbers a and b

(a + b)2 = a2 + 2ab + b2
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Solution:

(a + b)2 = (a + b)(a + b) = a(a + b) + b(a + b) (C1)

= a2 + ab + ba + b2 (D)

= a2 + ab + ab + b2 (M4)

= a2 + 1(ab) + 1(ab) + b2 (M2), (M4)

= a2 + (1 + 1)ab + b2 (C1)

= a2 + 2ab + b2 Def. of 2

Exercises:

(1) Solve the following equalities for x in a step-by-step manner,
listing each property you use as in Examples 1 and 2. DO
NOT USE Theorem 2.

(a) 7x − 5 = 19

(b) 7x = 2x + 3

(c)
3x + 2

x
= −1

(2) Re-do Example 5 without using Theorem 2. You may stop
once you have reduced the equation to 3x = 7.

(3) The work below proves the following equality. Copy the
proof onto your paper, giving reasons for each step. When
using (A1), state what expression is being substituted for a,
b, and c. DO NOT USE Theorem 2.

(x + y)(z + w) = (xz + yz) + (xw + yw)

(x + y)(z + w) = x(z + w) + y(z + w)

= (xz + xw) + (yz + yw)

= xz + (xw + (yz + yw))

= xz + ((xw + yz) + yw)

= xz + ((yz + xw) + yw)

= xz + (yz + (xw + yw))

= (xz + yz) + (xw + yw)
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(4) Let x, y, z be real numbers. In the notes we defined

x + y + z = (x + y) + z

There are 6 different orders in which we could sum 3 num-
bers, all of which, of course, yield the same answer. As an
illustration of this, use the axioms and the above definition
to prove the following equalities. DO NOT USE Theorem 2.
(a) x + y + z = z + x + y.
(b) x + y + z = z + y + x

(5) Let x, y, z, and w be real numbers. Use (A1) and the def-
initions to prove the following equalities. In each case state
what expression is being substituted for a, b, and c in (A1).
DO NOT USE Theorem 2.

x + (y + z + w) = (x + y) + (z + w)

= (x + y + z) + w

Remark: This exercise proves that the sum of four numbers
is independent of how they are grouped.

(6) Let x, y, z, w, and u be real numbers. Use (A1) and the
result of Exercise 5 to prove the following equalities. In each
case state what expression is being substituted for a, b, and
c in (A1). DO NOT USE Theorem 2.

x + (y + z + w + u) = (x + y) + (z + w + u)

= (x + y + z) + (w + u)

= (x + y + z + w) + u

Remark: This exercise proves that the sum of five numbers
is independent of how they are grouped.

(7) State and solve analogue of Exercise 5 for multiplication.
(8) State and solve analogue of Exercise 6 for multiplication.
(9) Why was (M4) needed in the first equation in the sequence

of equations (1)? How about in the fourth equation?
(10) Why was (A4) needed in the first equation in the sequence

of equations (2)? How about in the fourth equation?
(11) Reason as in Example 6 to prove the following number facts.

(a) 2 + 2 = 4
(b) 2 · 3 = 6 Hint: From Example 6 on page 14, 2 · 2 = 4.
(c) 3 − 4 = −1
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(d) 3 − 5 = −2
(12) (a) Prove property (C1).

(b) Let c and d be real numbers. Suppose c + d = 0. Use
the axioms to prove that c = −d. Hint: Solve c + d = 0
for c in a step-by-step manner.

(c) Use the result proved in (b) along with the axioms and
property (C2) to prove (C3). Hint: a + (−1)a = (1)a +
(−1)a.

(d) Use the result proved in (b) along with the axioms to
prove (C5). Hint: (−a) + a =?.

(e) Use the result proved in (b) along with the axioms and
property (C2) to prove the first equality in (C4). Hint:

ab + (−a)b =?
(13) Let c and d be real numbers.

(a) Suppose cd = 1. Use the axioms to prove that d = c−1.
Hint: First explain why c 6= 0. Then solve cd = 1 for d
in a step-by-step manner.

(b) Prove (C6). Hint: Simplify (ab)(a−1b−1) and apply the
result proved in (a).

(c) Use the result proved in (a) along with the axioms to
prove (C7). Hint: a−1a =?.

(14) If we wish to solve x2 + 3x + 2 = 0, we factor, finding that
(x + 1)(x + 2) = 0; hence x = −1 or x = −2. This is based
on the property that if a and b are numbers and ab = 0, then
either a = 0 or b = 0 (or both). Prove this property using
the axioms. Hint: If a = 0, there is nothing to prove. Hence
assume a 6= 0 and solve for b.

(15) Let a, b, c and d be numbers with b and d non-zero. Use the
axioms and properties (C1)-(C8) to prove the following:
(a) ab−1 = (ad)(bd)−1

(b) ab−1 + cd−1 = (ad + bc)(bd)−1

(c) (ab−1)(cd−1) = (ac)(bd)−1

(d) (ab−1)(cd−1)−1 = (ad)(bc)−1

(16) Each of the equalities in the preceding problem expresses a
familiar law of fractions. Write each in fractional form.


