
174



CHAPTER 11

Continuity

Consider the problem of measuring the side length of a square
and then using the measured date to compute the area of the square.
For example, if one side is measured to be 2.74 inches, then the area
would be computed as (2.74)2 = 7.5076 square inches. We know, of
course, that no measurement is precise. There will undoubtedly be
small errors in the measurement of the side length. This will result
in errors in the computed area. We also know from experience that
the errors in the area computation will be small as long as the errors
in the side measurement are also small; values of s close to 2.74 will
produce values of A close to (2.74)2. In mathematical terms, this
amounts to saying that

lim
s→2.74

s2 = (2.74)2.

This is a statement of the fact that the area function A(s) = s2 is
continuous at the point s = 2.74. In general, we define continuity as
follows:

Definition 1. A function f is continuous at a provided that

lim
x→a

f(x) = f(a).

Implicit in the above definition is the requirement that a belong
to the domain of f . It is also implicit that f(x) be defined for all x
sufficiently close to a since otherwise, the limit would not exist. (We
must be able to get |f(x) − f(a)| < ǫ for all x between a − δ and
a + δ.) Thus, the above definition requires that there is a δ > 0 such
that the interval (a − δ, a + δ) belongs to the domain of f .

This, however, presents us with a difficulty. According to this
definition, the function y =

√
x is not continuous at x = 0:

lim
x→0

√
x

175
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does not exist since
√

x is not defined for x < 0. The best we can say
is that

lim
x→0+

√
x = 0.

Because of such examples, we are forced to amend our definition
in the case that the domain of f(x) is a closed (or half-closed) interval.
Before doing so, however, we first give the “official” definition of left
and right hand limits:

Definition 2. Let f(x) be a function. We say that

lim
x→a+

f(x) = L

provided that for all ǫ > 0 there is a δ > 0 such that

|f(x) − L| < ǫ

for all x satisfying

0 < |x − a| < δ, x > a.

The definition of limx→a− f(x) = L is identical, except that “x >
a” in the last inequality above is replaced by “x < a.”

Now our amended definition of continuity states:

Definition 3. Suppose that the domain of f(x) is the interval
[a, b]. We say that f(x) is continuous at a if

lim
x→a+

f(x) = f(a)

We say that f(x) is continuous at b if

lim
x→b−

f(x) = f(b).

Intuitively, continuity may be described in the same terms as we
did for the square function: values of x near a produce values of
f(x) near f(a). (See Figure 1). It is very fortunate that most of the
functions which arise in the real world are continuous. Otherwise, we
would never be able to calculate anything!

You use continuity almost every time you evaluate a limit. For
example, if you were to compute limx→2 x2, you would probably just
‘plug 2 in,’ finding the answer 22 = 4. What you are saying is that for
the function f(x) = x2, the limit as x approaches 2 of f(x) is f(2).
Thus, another way of describing what continuity at a means is to say



11. CONTINUITY 177

.
a

.
x

f(a)
f(x)

x near a

f(x) near f(a)

Figure 1

that the limit as x approaches a may be computed by ‘plugging a
into f ’.

Figure 2 below show a few common types of discontinuities.

.
a

.
x

f(x)

x near a

o

.f(a)

f(x) not near f(a)

.

o

a

f(a)

f(x)

x

x near a

f(x) not near f(a)

Figure 2

The first graph is an example of what is called a removable dis-

continuity. From the graph, L = limx→a f(x) exists, but just does not
happen to equal f(a). If we were to redefine f(a) by setting f(a) = L,
then we would produce a new function which is continuous.

In the second graph, the continuity is not removable since limx→a f(x)
does not exist: we get different answers for the limit, depending upon
whether we approach a from the left or from the right.

Example 1. Let f(x) be

f(x) =

√
x − 2

x − 4
.
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Then f is not continuous at x = 4 because x = 4 does not belong to
the domain of f . Show that x = 4 is a removable discontinuity. How
should f(4) be defined so as to make f continuous?

Solution: To be continuous at x = 4 we require

(1) f(4) = lim
x→4

f(x) = lim
x→4

√
x − 2

x − 4
.

If we attempt to evaluate this limit by “plugging” x = 4 into the
fraction, we get the indeterminant form 0/0, which does not help.

There are several correct ways to evaluate this limit. Our favorite,
perhaps, is to rationalize:

√
x − 2

x − 4
=

(
√

x − 2)(
√

x + 2)

(x − 4)(
√

x + 2)

=
x − 4

(x − 4)(
√

x + 2)
=

1√
x + 2

.

The limit is 1/4. Hence, we should define f(4) = 1/4.

The next example exhibits a much more ‘serious’ discontinuity.

Example 2. Let f(x) be

f(x) = sin
1

x
x 6= 0

= 0 x = 0.

Show that f is discontinuous at x = 0.

Solution: The function f(x) is zero whenever 1/x = kπ which is
equivalent with x = π

k
. Hence, f has an infinite number of zeros

between π and 0. Between these zeros, f oscillates between 1 and
−1. Thus, the graph of f looks something like that shown in Figure 3
below:

As x → 0, f(x) does not approach any single value, showing that
f has a non-removable discontinuity at x = 0.

Proving that a given function is continuous at a given value is
often quite easy.

Example 3. Prove that the function f(x) = x2 is continuous at
all a ∈ R.
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.

Figure 3

Solution: Let a be some real number. Then, from the product
theorem for limits,

lim
x→a

f(x) = lim
x→a

x2 = (lim
x→a

x)(lim
x→a

x) = aa = a2 = f(a).

This simple problem illustrates the following theorem which is a
direct consequence of the Product Theorem for limits of functions.

Theorem 1 (Product). Suppose that f(x) and g(x) are both con-

tinuous at a. Then h(x) = f(x)g(x) is continuous at a.

It follows from the product theorem that the function f(x) = x3

is continuous for every a since x3 = x(x2). The following proposition
follows by similar reasoning:

Proposition 1. For n ∈ N, function f(x) = xn is continuous at

every a ∈ R.

Once we know the continuity of such functions, it is easy to prove
the continuity of many other functions as well.

Example 4. Prove that the function f below is continuous at
every a in its domain:

f(x) =
x2 + 1

x2 − 3x + 2
.

Solution: Let us first note that the denominator of f factors as
(x− 1)(x− 2). Hence the domain of f is all real x, x 6= 1 and x 6= 2.
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Let a be an element of the domain of f . Since a is not equal to either
1 or 2, we see that as x approaches a, the denominator in f will not
approach 0. This allows us to apply the quotient rule for limits:

lim
x→a

x2 + 1

x2 − 3x + 2
=

limx→a x2 + limx→a 1

limx→a x2 − 3 limx→a x + 2 limx→a

=
a2 + 1

a2 − 3a + 2
.

Since the final answer is what would have been obtained by plugging
a into the formula for f , the continuity is proved.

The above example illustrates the following theorem which is a
direct consequence of the quotient theorem for limits of functions.

Theorem 2 (Quotient). Suppose that f(x) and g(x) are both con-

tinuous at a and that g(a) 6= 0. Then h(x) = f(x)/g(x) is continuous

at a.

In a calculus class, one might compute a limit such as

lim
n→∞

√

n

2n + 1

as follows:
Let xn = n

2n+1
. Since

lim
n→∞

xn =
1

2

we see that

lim
n→∞

√

n

2n + 1
= lim

n→∞

√
xn

= lim
x→1/2

√
x =

√

1

2
.

This method is based on the continuity of y =
√

x at x = 1/2.
Specifically, it uses the following theorem:

Theorem 3 (Sequence). Let f(x) be continuous at a and let xn

be a sequence such that limn→∞ xn = a. Then

lim
n→∞

f(xn) = f(a).

Proof Let ǫ > 0 be given. Since limx→a f(x) = f(a), there is a δ > 0
such that

(2) |f(x) − f(a)| < ǫ.
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for |x − a| < δ, x 6= a. This inequality holds even if x = a since in
this case the left hand quantity is zero.

But, since limn→∞ xn = a, there is an N such that

|xn − a| < δ

for all n > N . Replacing x with xn in (2) shows that

|f(xn) − f(a)| < ǫ

for n > N , which proves our theorem.

Continuity is important for solving equations.

Example 5. Show that the following equation has a solution
x ∈ [0, 1].

2x3 + x2 − 1 = 0

Solution: We compute that f(0) = −1 and f(1) = 2 which suggests
that f has a zero somewhere in the interval [0, 1]. As a check we graph
f over [0, 1]. The graph certainly seems to confirm the existence of a
zero.

x
0 10.90.80.70.60.50.40.30.20.10

0

2

1.5

1

0.5

0

-0.5

-1

Figure 4

We stress, however, that the graph only seems to cross the axis.
Indeed, on many graphing calculators, if you trace the graph, you
will not find a value of x for which y is exactly zero. This is because
the calculator only plots a finite number of points. That the graph
actually does cross the x-axis is a consequence of Proposition 2 below.
The last sentence in the statement of this proposition says that there
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is a smallest a such that f(a) = 0. Theorem 4 below, which is an
immediate consequence of Proposition 2, is one of the fundamental
results in analysis.

Proposition 2. Let f be continuous at every x in a closed in-

terval [b, c]. Suppose that f(b) < 0 and f(c) > 0. Then there is an

a ∈ [b, c] such that f(a) = 0. We may choose a so that f(x) < 0 for

all x < a, x ∈ [b, c].

Proof Let
S = {x ∈ [b, c] | f(x) ≥ 0}

and let a = inf S. (See Figure 5 below.) We will show that f(a) = 0.
This will finish our proof since if x ∈ [b, c] satisfies x < a, then x /∈ S,
showing that f(x) < 0.

S

a

Figure 5

From Exercise 9 on page 95 in Chapter 6, there is a sequence
xn ∈ S with limn→∞ xn = a. From Theorem 3

f(a) = lim
n→∞

f(xn).

Since xn ∈ S, f(xn) ≥ 0. Hence f(a) ≥ 0. (Exercise 29 on page 73
in Chapter 4.)

Suppose that f(a) 6= 0. Then f(a) > 0. We claim that it follows
that there is a δ > 0 such that f(x) > 0 for all x ∈ [b, c] satisfying
|x−a| < δ. If our claim is true, then we have reached a contradiction,
since it follows that f(x) is positive on the interval a− δ < x < a+ δ,
which denies our observation that f(x) < 0 for x < a.

To prove the claim, let ǫ > 0 be chosen so that

0 < ǫ < f(a).
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Since

lim
x→a

f(x) = f(a)

there is a δ > 0 such that for 0 < |x − a| < δ,

|f(x) − f(a)| < ǫ

−ǫ < f(x) − f(a) < ǫ

f(a) − ǫ < f(x) < f(a) + ǫ

It is clear that the above inequalities are also valid for x = a. This
proves or claim since f(a)−ǫ > 0. Hence, our proposition follows. ¤

The following result follows by applying Proposition 2 to the func-
tion f(x) = g(x)−D. The details are left to the reader. (Exercise 11)
As before, the last sentence in the statement of this theorem says that
there is a smallest a such that g(a) = D.

Theorem 4 (Intermediate Value (IVT)). Let g be continuous

at every x in a closed interval [b, c]. Suppose that g(b) < D and

g(c) > D. Then there is an a in the interval [b, c] such that g(a) = D.

This a may be chosen so that g(x) < D for x ∈ [b, c], x < a.

Remark: The conclusion of the Theorem 4 holds if we assume in-
stead that g(b) > D and g(c) < D. This result follows by applying
Proposition 2 to the function f(x) = D − g(x). Again, we leave the
details to the reader. (Exercise 12)

Remark: By definition,
√

2 is that positive number a such that

a2 = 2.

How do we know that such a number exists? None of the axioms
from Chapters 1 and 2 state that such a number exists. In fact,
since

√
2 is irrational, the axioms from Chapters 1 and 2 cannot, by

themselves, be used to prove the existence of
√

2: if we could prove its
existence using these axioms then our proof would prove the existence
of

√
2 in the rational numbers since these axioms all hold for both

the real and the rational number systems. Thus, in the context of
these notes, we cannot prove the existence of

√
2 without using either

the Least Upper Bound Axiom or one of its consequences, such as the
IVT.
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d=2

f(2)

f(0)

y=x 2

The square root of  2

Figure 6

In fact, the existence of
√

2 is a simple consequence of the IVT.
Consider the function f(x) = x2 on the interval [0, 2] shown in Fig-
ure 6. Proposition 1 Shows that f(x) is continuous for all x. Also,
f(0) = 0 and f(2) = 4. Since 0 < 2 < 4, it follows from the IVT
that there is a number a ∈ [0, 2] such that 2 = f(a) = a2, proving the
existence of

√
2. In fact, in precisely the same manner we can prove

that every positive number d has a positive square root.
There is a deep and important difference between the way contin-

uous functions behave on closed intervals and other types of intervals.
Consider for example the function f(x) = x2 on the interval (0, 2).
The maximum value of f(x) appears to 4; except 4 is not a value
of f(x) at all since 2 /∈ (0, 2). Rather 4 is a sup. This function has
no maximum over (0, 2). Similarly f has only an inf over (0, 2) since
0 /∈ (0, 2). Even worse, consider the function f(x) = 1/x on the same
interval. This function isn’t even bounded on this interval.

On the other hand, our intuition tells us that this kind of “misbe-
havior” cannot happen for a continuous function over a closed inter-
val. Such a function should have both a maximum and a minimum.

Theorem 5. Let f be continuous at every x in a closed interval

[a, b]. Then there is a value c ∈ [a, b] such that f(c) ≥ f(x) for all

x ∈ [a, b].

Proof The proof breaks down into two steps:

(1) Prove that there is a number M such that f(x) ≤ M for all
x ∈ [a, b]. (We say that f(x) is bounded from above.)
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(2) Prove the existence of c.

1

2

3

4

5

6

7

8

x x x x x3 4 5 6 7

[ ]
a b

Figure 7

To prove (1), assume that it is false. Then for each M ∈ R, there
is an x ∈ [a, b] such that f(x) > M . In particular, for each n ∈ N,
n > f(a), there is an x ∈ [a, b] such that

f(x) > n > f(a).

It then follows from the MVT that there is a smallest value xn ∈ [a, b]
such that

f(xn) = n.

(See Figure 7.)
Figure 7 suggests that the xn are increasing. This is indeed true:

Since f(xn+1) = n + 1 > n > f(a), there is a value of x between a
and xn+1 such that f(x) = n. Since xn is the first such x, we see that
xn ≤ x ≤ xn+1, as claimed.

From the Bounded Increasing Theorem, x = limn→∞ xn exists.
But then

f(x) = lim
n→∞

f(xn) = lim
n→∞

n = ∞
which is nonsense, proving that f is bounded.

Now let
ymax = sup{f(x) | x ∈ [a, b]}.

This exists since, as we just showed, f is bounded from above. We
want to prove that there is a c ∈ [a, b] such that

f(c) = ymax.
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Suppose that this is false. Then the function

g(x) = ymax − f(x)

is positive on [a, b]. Hence, from Theorem 2

h(x) =
1

ymax − f(x)

is continuous on [a, b]. Thus, from the argument done to prove part
(1), h(x) is bounded from above–i.e. there is a number M ′ such that

(3) h(x) ≤ M ′

for all x ∈ [a, b].
On the other hand, since ymax is the sup of the y-values of f(x)

over [a, b], there is a sequence xn ∈ [a, b] such that

ymax = lim
n→∞

f(xn).

(Exercise 9 on page 95 in Chapter 6.)
There is then an N such that for all n ≥ N ,

|ymax − f(xn)| <
1

M ′
.

This implies that h(xn) > M ′, contradicting inequality (3). This
finishes the proof of our theorem. ¤

Remark: There is of course a Min Theorem. Being lazy, and not
liking to type, we shall leave both the statement and the proof to the
reader.

Exercises:

(1) Let f(x) = (sin x)/x of x 6= 0 and let f(0) = 1. Why is f
continuous at x = 0?

(2) Let g be the function defined by

g(x) =
x100 − 2100

x − 2
x 6= 2.

How should g(2) be defined so as to make g continuous for
all real numbers x.

(3) Let f(x) be differentiable at x = a. How should the following
function be defined at x = a to make it continuous.

g(x) =
f(x) − f(a)

x − a
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(4) Let f(x) = x sin(1/x). How should f(0) be defined so as to
make f continuous.

(5) Let f be the function defined by

f(x) = x x < 1

f(x) = a − x x ≥ 1

where a is some real number. How should a be chosen so as
to make f continuous for all real x?

(6) Find an example (reader’s choice) of a function which in not
continuous at

1,
1

2
,

1

3

1

4
, . . . ,

1

n
, . . .

but is continuous for all other values of x, including x = 0.
Hint: Let f(x) = 0 if x 6= 1/n. How should f(1/n) be
defined?

(7) Suppose that we define a function f by saying that f(x) =
1 if x is rational and f(x) = −1 if x is irrational. Thus,
f(π) = −1 and f(2/3) = 1. Graph f . For which values of x
is f continuous? Explain.

(8) Define a function f as follows. Suppose first that x is ra-
tional, x = p/q where p and q are integers with q > 0 and
p and q have no common factors. In this case, we define
f(x) = 1/q. If x is irrational, we define f(x) = 0. Thus

f(
3

4
) = f(

1

4
) =

1

4

f(
4

18
) = f(

2

9
) = fn19f(

32

17
) =

1

17

f(
√

2) = f(π) = 0.

(a) Compute f(3), f(3.1), f(3.14) and f(3.141). Do you
think f is continuous at x = π? Explain.

(b) Compute f(3.1), f(3.01), f(3.001) and f(3.0001). Do
you think f is continuous at x = 3? Explain.

(c) For which values of x do you think f(x) continuous?
Explain.

(9) Consider the function f(x) = 1/x. Then f(1) = 1 > 0 and
f(−1) = −1 < 0. Theorem 1 would seem to say that there
is an a ∈ [−1, 1] such that f(a) = 0. This, of course, is false.
Why is this not a contradiction to the IVT?



188 11. CONTINUITY

(10) Prove that there is a value of x such that x3 − x = 10. Find
the value of x to within ±.005. Prove your answer.

(11) Write a careful proof of the IVT (Theorem 4) using Propo-
sition 2.

(12) Write a complete statement of the theorem implied by the re-
mark immediately following the statement of the IVT (The-
orem 4). Then use Proposition 2 to prove this theorem.

(13) Prove that there is an x ∈ [0, 1] such that cos x = x and find
x to within ±.001. Hint: Let f(x) = cos x − x. Consider
f(0) and f(1).

(14) Suppose that f is continuous at every x in [0, 1] and that
for all x in this interval, 0 ≤ f(x) ≤ 1. Prove that there is
an x ∈ [0, 1] such that f(x) = x. Hint: This is similar to
Exercise 13.

(15) Suppose that f is continuous at every x in [0, 1] and that for
all x in this interval, 0 ≤ f(x) ≤ 1. Prove that there is an
x ∈ [0, 1] such that f(x) = 1 − x. Hint: This is similar to
Exercise 13.

(16) Find both points of intersection of the curves curves y = ex

and y = 3x + 1. Give an answer accurate to within ±.01.
(Note: If you were asked to find the area between these
curves, you would need to find these points before integra-
tion. There is no algebraic way to solve for these points.)

(17) Prove than any cubic polynomial f(x) = ax3 + bx2 + cx +
d has at least one real zero. For this you should consider
limx→∞ f(x) and limx→−∞ f(x).

(18) Draw a graph which represents a one-to-one function f(x)
which is defined for all real numbers x and which is increasing
for some values of x and decreasing for other values of x.
What ‘bad’ property does your graph exhibit. Prove that any
such example must necessarily have this same ‘bad’ property.

(Recall that one-to-one means that for each y-value there
is at most one x such that f(x) = y.)

(19) Let f be a continuous at every x in a closed interval [a, b].
Prove that the range of f is also a closed interval. Hint:
Prove that the range is [c, d] where c = min f(x) and d =
max f(x)

(20) Let f be a one-to-one function and let g be the inverse func-
tion. (Hence, g(f(x)) = x for all x in the domain of f .)
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Prove that f(g(y)) = y for all y in the range of f . Hint:

Since y is in the range of f , y = f(x) for some x.
(21) Let f be a one-to-one function which is increasing. Prove

that f−1 is also increasing. Hint Suppose that there are
numbers a < b such that g(a) ≥ g(b). What do you know
about the effect of applying f to inequalities?

(22) Let f be a continuous, increasing function defined for all real
numbers and let g(x) = f−1(x). Below is a rather poorly
written proof of the continuity of g(x). Rewrite this proof in
a more acceptable form. Specifically
(a) You will need to begin with a statement defining ǫ fol-

lowed by a statement defining δ.
(b) You will need to prove that the value of δ defined in (5)

is positive. Hint: Apply f(x) to the inequality g(a)+ǫ >
g(a) > g(a) − ǫ.

(c) The given proof is a “backwards” proof. You will need
to reverse it.

(d) You will need to include a statement between (4) and
(5) defining x such as “Let 0 < |x − a| < δ.”

(e) You will need to explain how (4) follows from your def-
inition of δ.

(f) You will need to explain how (2) follows from (3).
(g) You will need to explain how (1) follows from (2). Hint:

See Exercise 22 above.
(h) You will need to put in a “bottom line” statement indi-

cating that you have done what was necessary.
Proof

|g(x) − g(a)| < ǫ

g(a) − ǫ < g(x) < g(a) + ǫ (1)

f(g(a) − ǫ) < f(g(x)) < f(g(a) + ǫ) (2)

f(g(a) − ǫ) < x < f(g(a) + ǫ) (3)

f(g(a) − ǫ) − a < x − a < f(g(a) + ǫ) − a (4)

Let δ be the smaller of

a − f(g(a) − ǫ) and f(g(a) + ǫ) − a. (5)
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(23) State carefully a theorem relating to minimums which is
analogous to Theorem 5. Give a careful proof of your theo-
rem using a similar line of reasoning as was used in proving
Theorem 5.

(24) Let

f(x) =2 x > 3

f(x) =1 x ≤ 3

Graph f . What is the largest x such that f(x) ≤ 1? What
is the smallest x such that f(x) ≥ 2?

(25) Suppose that f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b). Suppose also that
f(a) = f(b). Prove that there is a point xo , a < xo < b,
such that f ′(xo) = 0. For your proof you may assume the
theorem that states that f(x) has either a max or a min at
xo ∈ (a, b), then f ′(xo) = 0.

f(a)=f(b)

x xo oa b

y=f(x)

Rolle’s Theorem

Figure 8. Exercise 25

(26) Rolle’s theorem is important for one, and only one, reason:
It is used in proving the Mean Value Theorem. The Mean
Value Theorem is pictured below. Pictorially, it says that
given a secant line for some differentiable curve, there is a
point at which the slope of the tangent line is equal to that
of the secant line.

In writing, the MVT says

Theorem 6 (Mean Value Theorem MVT). Let f be con-

tinuous on the closed interval [a, b] and differentiable on the
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a b

(b,f(b))

c c

(a,f(a))

The Mean Value Theorem

Figure 9. Exercise 26

open interval (a, b). Then there is a value c, a < c < b, such

that
f(b) − f(a)

b − a
= f ′(c).

In this problem, we request that you answer the questions
below and, hence, prove the MVT.
(a) Let l be the line which passes through the points (a, f(a))

and (b, f(b)) in the figure above. This is the secant line.
Compute a formula for l. Express your formula in the
form y = mx + B.

(b) Let h(x) = f(x) − (mx + B) where mx + B is from
(a) above. Indicate on a graph similar to the one above
what quantity h(x) measures.

(c) Let h be as in (b) above. Show that h(a) = h(b) and
h′(x) = f ′(x)−m. What, explicitly, does Rolle’s Theo-
rem tell you about h? The MVT should drop out!

(27) If f is a continuous function defined over a closed interval
[a, b], we define the ‘average value’ of f to be

A =
1

b − a

∫ b

a

f(x)d x.

The reason that this is thought of as an average is that the
integral is thought of as summing the values of f(x) for x ∈
[a, b] and (b − a), in some sense, represents the number of x
in [a, b].

Now, suppose that f is increasing (and continuous) over
[a, b]. We expect that f(a) is ‘below average’ and f(b) is
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‘above average’. There should, then, exist some value c be-
tween a and b where f(c) is exactly average. This is the
content of the ‘Mean Value Theorem for Integrals’.

Theorem 7 (Integral Mean Value). Let f be a continu-

ous function over the interval [a, b]. Then there is a c between

a and b such that

f(c) =
1

b − a

∫ b

a

f(x)d x.

In this exercise, you are asked to prove this important
theorem in the case where f(a) > 0 and f is increasing over
the interval [a, b]. Four your proof, you should use geometric
reasoning involving area to prove that

f(a) ≤ 1

b − a

∫ b

a

f(x)d x

(f(a) is ‘below average’) and

f(b) ≥ 1

b − a

∫ b

a

f(x)d x.

(f(b) is above average.) How does the Integral Mean Value
Theorem follow? How have you used the continuity of f?
Hint: Put a rectangle of height f(a) under the curve and a
rectangle of height f(b) over the curve.

(28) In the above exercise, you needed to assume that f was in-
creasing. You can avoid this if you deal with the minimum
and maximum values of f instead of f(a) and f(b). Ex-
plicitly, use geometric reasoning to prove that the minimum
value of f is ‘below average’ and the maximum is ‘above
average’. How does the theorem follow?

(29) One of the most important uses of the Integral Mean Value
Theorem is to prove the Fundamental Theorem of Calculus.
Let f be a continuous function defined for all real numbers.
Let

F (x) =

∫ x

0

f(t)d t.

The Fundamental Theorem says that for all a,

F ′(a) = f(a).
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In this exercise, we request that you use the Mean Value
Theorem for Integrals to prove the Fundamental Theorem.
The proof is based upon

F ′(a) = lim
x→a

F (x) − F (a)

x − a
.

The most important step is to prove that

F (x) − F (a)

x − a
=

1

x − a

∫ x

a

f(t)d t.

Once you have done this, you apply the Mean Value Theorem
for Integrals and let x → a. Write out in detail how this all
works.


