
CHAPTER 2

Inequalities

In this section we add the axioms describe the behavior of inequal-
ities (the order axioms) to the list of axioms begun in Chapter 1.
A thorough mastery of this section is essential as analysis is based on
inequalities.

Before describing the additional axioms, however, let us first ask,
“What, exactly, is an inequality?” Addition is a binary operation; it
takes two numbers a and b and produces a third, a + b. Less than
is a binary relation: it takes two numbers a and b and produces
either the value ‘true’ or ‘false’. Mathematically, we would say that
< is a function whose domain is the set of all pairs of real numbers
and whose range is the set {true, false}. Thus 2 < 3 produces ‘true’
and 3 < 2 produces ‘false’. If we write a < b without explanation, we
are asserting that a < b is true.

Order Axioms

I1: (Trichotomy) For real numbers a and b, one and only one,
of the following statements must hold:
(1) a < b
(2) b < a
(3) a = b.

I2: (Transitivity) If a < b and b < c, then a < c.
I3: (Additivity) If a < b and c is any real number, then a+c <

b + c.
I4: (Multiplicativity) If a < b and c > 0, then ac < bc.

Important! Throughout this text, in our proofs, we will typically
only give reasons for material from the current chapter. Hence, in
doing proofs with inequalities, we will typically not explicitly indicate
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18 2. INEQUALITIES

the use of field axioms such as associativity, commutativity, etc. Sim-
ilarly, in Chapter 3, we will not typically indicate the use of the order
axioms in our proofs.

We define a > b to mean b < a. The statement a ≤ b is a
compound statement. It is true if either a < b or if a = b. Thus
2 ≤ 3 and 3 ≤ 3 are both true statements. The symbol ‘≥’ is defined
similarly.

There are many rules for studying inequalities which are derivable
from the axioms. The reader will be asked to prove many of them in
the exercises. These are not axioms.

Theorem 1. Let a, b, c, and d be real numbers. Then

E1: (Inequalities add) If a < b and c < d, then a + c < b + d.
E2: (Positive inequalities multiply) If 0 < a < b and 0 < c < d,

then 0 < ac < bd.
E3: (Multiplication by negatives reverses inequalities) If a < b

and c < 0, then ac > bc.
E4: (Inversion reverses inequalities) If 0 < a < b, then

1
a

> 1
b

> 0.
E5: (The product to two negatives is positive) If a < 0 and

b < 0 then ab > 0.
E6: If ab > 0 then either both a and b are positive or they are

both negative.
E7: For all a, a2 ≥ 0.
E8: If a ∈ N, a > 0. (Recall that N is the set of natural

numbers.)

Remark: In the following example we use interval notation familiar
from calculus. Thus, if a and b are real numbers with a < b, then
(a, b) is the set of x such that a < x < b. Use of a bracket instead of
a parenthesis indicates that the corresponding end point is included.
Hence, for example, [a, b) is the set of x such that a ≤ x < b. Use of
∞ as a right end point, or −∞ as a left endpoint, indicates that the
interval has no endpoint on that side. Note, however, that ∞ is NOT
A NUMBER! Thus, for example, there is no interval “(−1,∞].”

In general, a set is just a collection of objects. The objects in the
set are the elements of the set. We write “x ∈ A” as shorthand for “x
is an element of A.” Hence, x ∈ (2, 5] is equivalent with 2 < x ≤ 5.
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Example 1. Find the solution set to the following inequality. Do
your work in a step-by-step manner so as to demonstrate the order
axioms and properties used.

(1) 2x + 1 < 3x + 2

Solution: Suppose that x satisfies the given inequality. Then

2x + 1 < 3x + 2

2x < 3x + 1 (I3)

−x < 1 (I3)

x > −1 (E3)

Hence, if x satisfies inequality (1), then x ∈ (−1,∞).
Conversely, suppose that x ∈ (−1,∞). Then

x > −1

−x < 1 (E3)

2x < 3x + 1 (I3)

2x + 1 < 3x + 2 (I3)

Hence, x satisfies the given inequality, showing that the solution set
is (−1,∞).

Note that our proof in the second part of the solution was just
the proof from the first part “run in reverse.”

Remark: Notice that our solution required two proofs: we first
proved that if x solves (1), then x ∈ (−1,∞). We next proved that
if x ∈ (−1,∞), then it solves (1). Both parts are necessary because
the solution set is a SET. Two sets A and B are equal if they consist
of exactly the same elements–i.e. every element of A is an element
of B AND every element of B is an element of A. Thus, in princi-
pal, proving the validity of a solution set to an inequality will always
involve two proofs. We first show that if some number solves the in-
equality, then it belongs to a certain set. Next we show that every
element of this set solves the inequality. This second proof is often
just the first proof reversed. In fact, we often skip the second proof
altogether since it is usually clear that our steps do reverse. However,
in this section we will insist that you do the reverse proof since we
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want to stress that both parts are necessary. Sometimes, in fact, the
steps do not reverse, in which case your solution may require some
modification, as in the following example.

Example 2. Solve the following inequality and prove your an-
swer.

(2) x ≥
√

2 − x

Solution: We begin by noting that inequality (2) is meaningless if
x > 2, since then

√
2 − x in undefined. Thus, we assume that x ≤ 2.

We now reason as follows1:

x ≥
√

2 − x

x2 ≥ 2 − x (We squared both sides1)

x2 + x − 2 ≥ 0 (I3)

(x − 1)(x + 2) ≥ 0

From (E6), this inequality holds if (x−1) and (x+2) both have the
same sign (or are both zero) which holds if either x ≥ 1 (both terms
≥ 0) or x ≤ −2 (both terms ≤ 0). Since we have already assumed
x ≤ 2, our solution appears to be (−∞,−2]∪ [1, 2]. 2 This, however,
is wrong. For example, if x = −2, inequality (2) says −2 ≥

√
4 = 2.

To find our mistake, we attempt to reverse our sequence of in-
equalities:

Suppose that x ∈ (−∞,−2] ∪ [1, 2]. Then x − 1 and x + 2 both
have the same sign (or are both zero). Hence

(3)

(x − 1)(x + 2) ≥ 0

x2+x − 2 ≥ 0

x2 ≥ 2 − x

We would like to take the square root of both sides of this in-
equality. We must, however, be careful. For negative x, it is not true
that

√
x2 = x. For example

√

(−2)2 =
√

4 = 2 6= −2

1We discuss the validity of operations such as squaring and square rooting

inequalities after the discussion of this example.
2In set theory, A ∪ B is the set of elements which belong to A or B or both.
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Rather
√

x2 = |x|. Thus, “square-rooting” both sides of inequality (3)
produces

|x| >
√

2 − x

which is not equivalent with equation (2).
In fact, since square roots can never be negative, only non-negative

x can satisfy inequality (2). Thus, the interval (−∞,−2] cannot be
part of our solution set. For x in [1, 2], the final inequality in for-
mula (3) can be square-rooted, showing that our solution set is just
[1, 2].

Our first step in solving Example 2 was to square both sides of
the inequality (2). Is this allowed? More generally, if we do the same
thing to both sides of an inequality, is the inequality preserved? The
answer to this last question is, “NO!” If we multiply both sides by
−1, the inequality reverses: 2 < 3 but −2 > −3. If we take the
inverse of both sides the inequality can also reverse: 2 < 3 but 1

2
> 1

3
.

On the other hand, adding the same number to both sides preserves
the inequality: 2 + 1 < 3 + 1. So when does doing the same thing to
both sides preserve the inequality and when does it reverse it?

The answer comes from calculus. Recall that a function y = f(x)
is said to be increasing if y gets larger as x gets larger–i.e. x1 <
x2 implies f(x1) < f(x2). This means that applying an increasing
function to both sides of an inequality preserves it. The function
y = x2 is increasing for x ≥ 0. (Figure 1) Hence squaring both sides
of an inequality will be valid as long as both sides are non-negative.
Since square roots are non-negative, inequality (2) is only meaningful
if both sides are non-negative. Hence, squaring both sides was indeed
valid.

Similarly, applying a decreasing function to both sides of an in-
equality will reverse it. For example, the function y = x2 is decreasing
for x < 0. Hence, squaring inequalities involving negative numbers
will reverse the inequality. For example −3 > −4 but 9 < 16.

Example 3. Find an interval I on which a < b implies

ae−a > be−b

Solution: Let f(x) = xe−x. The example asks for an interval I
on which application of f(x) to both sides of a < b reverses the
inequality. This will be true for any interval on which f is decreasing.
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From calculus, f(x) will be decreasing on any interval where f ′(x) <
0. We compute

f ′(x) = e−x − xe−x = (1 − x)e−x

which is negative for x > 1. Hence we may take I = (1,∞). To
illustrate our answer, note that 2 and 3 belong to I and 2 < 3, but
2e−2 = .271 which is larger than 3e−3 = .149.

Remark: In a formal proof, whenever you apply a function
to both sides of an inequality, you must justify your work in
terms of the increasing or decreasing nature of the function
in question.

When solving inequalities, one must be careful when multiplying
both sides by a quantity which might potentially be negative.

Example 4. Solve the following inequality and prove your an-
swer.

(4)
x

x + 1
≥ 1
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Solution: If we are not careful, we will not find any such x. Specif-
ically, we might reason as follows:

x

x + 1
≥ 1

x ≥ x + 1 (I4)

0 ≥ 1 (I3)

Since 0 < 1, there are no such x.
But this is wrong. For x = −2,

−2

−2 + 1
= 2 ≥ 1

Our mistake lay in the first step of our solution where we multiplied
both sides of the given inequality by x + 1 without reversing the
inequality. This is valid only if x + 1 is positive.

If x + 1 < 0, (i.e. x < −1)

x

x + 1
≥ 1

x ≤ x + 1 (E3)

0 ≤ 1 (I3)

Since 1 = 12, (E7) implies that 0 ≤ 1; hence our inequality yields
no additional restriction on x. Thus, we guess that the inequality
is valid for all x < −1. We can prove this by repeating the above
inequalities in reverse order:

0 ≤ 1 (E7) and 1 = 12

x ≤ x + 1 (I3)
x

x + 1
≥ 1 (E3)

Thus, the solution to our inequality is x < −1. (Note that the in-
equality is meaningless if x = −1 since division by 0 is not allowed.)

When multiplying (or dividing) an inequality by a quantity that
can be either positive or negative, it is often necessary to the cases
where the quantity may be positive separate from the cases where it
may be negative, as in the next example.
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Example 5. Solve the following inequality and prove your an-
swer.

(5)
x2

(x + 1)
< x + 1

Solution: We begin by multiplying by x+1. Since this quantity may
be positive or negative, we split the argument into the corresponding
cases:

Case 1: x > −1.
Assume that x satisfies the given inequality and x > −1. Then

x2

(x + 1)
< x + 1

x2 < (x + 1)2 (I4)

x2 < x2 + 2x + 1

0 < 2x + 1 (I3)

−1 < 2x (I3)

−1

2
< x (I4)

Conversely, if x > −1
2
, then x > −1. Hence, we may reverse the above

sequence of inequalities to see that inequality (5) holds. We conclude
that in Case 1, our inequality holds if and only if x ∈ (−1

2
,∞).

Case 2: x < −1.
Assume that x satisfies the given inequality and x < −1. Then

x2

(x + 1)
< x + 1

x2 > (x + 1)2 (E3)

x2 > x2 + 2x + 1

0 > 2x + 1 (I3)

−1 > 2x (I3)

−1

2
> x (I4)
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Since −1
2

> −1, this is true for all x satisfying the assumptions of
Case 1. Conversely, if x < −1, then x < −1

2
. Hence, we may reverse

the above sequence of inequalities to see that inequality (5) holds.
We conclude that our inequality for all x satisfying the hypotheses of
Case 2.

Conclusion: Putting Case 1 and 2 together, we see that the solution
set of the inequality is (−∞,−1) ∪ (−1

2
,∞).

Many students learn to do proofs by starting with what they wish
to prove and reasoning until they obtain a true statement. Without
further qualification, this is not a valid proof technique. For example,
if we square both sides of

−2 = 2

we obtain

4 = 4

which is true. This certainly does not prove that −2 = 2.
To be valid, a proof must, in principle, begin with known

facts and end with what you want to prove. The bottom line
must be what you want to prove. A proof that begins with what you
want to prove and ends with a true statement is called backwards.

Often, as the following example illustrates, a backwards proof can
be reversed to produce a valid proof. In fact, it is a standard proof
technique to begin (on a piece of scratch paper) with what you want
to prove, reason until you reach a known statement, and then produce
the formal proof by reversing the argument.

In this example, as elsewhere in these notes, we write our
“scratch work” in italics to distinguish it from the work we
might hand in if this were a homework assignment.

Example 6. Let a and b be positive numbers. Prove that

a + b ≤
√

2(a2 + b2)1/2.
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Scratch Work: Squaring both sides and simplifying produces:

(a + b)2 ≤ 2(a2 + b2)

a2 + 2ab + b2 ≤ 2a2 + 2b2

0 ≤ a2 − 2ab + b2 (Subtract a2 + 2ab + b2 from both sides.)

0 ≤ (a − b)2

which is true from (E7). Our formal proof will be obtained by revers-
ing the above steps.

Proof:

0 ≤ (a − b)2 (E7)

0 ≤ a2 − 2ab + b2

a2 + 2ab + b2 ≤ 2a2 + 2b2 (I3): Add a2 + 2ab + b2 to both sides

(a + b)2 ≤ 2(a2 + b2)

a + b ≤
√

2(a2 + b2)1/2 y =
√

x is a increasing function

as desired.
Note that in our scratch work we squared both sides of the in-

equality whereas in the actual proof we took the square root of both
sides.

Remark: A backwards argument becomes a valid proof if we are
careful to mention (and check) the reversibility of each step in the
backwards argument. In this section we will insist that all “backwards
proofs” be reversed. Later we will allow you to simply note that the
steps do reverse.

We will often need to study inequalities involving absolute values.
By definition,

|x| =
{ x x ≥ 0

−x x < 0

Proving theorems about absolute values often requires the con-
sideration of several cases which depend on the sign of the quantities
involved.
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Example 7. Prove that for all x and y

|xy| = |x| |y|

Solution: There are 3 cases: (1) x > 0, (2) x = 0 and (3)x < 0. We
will begin case (1) and leave the remaining cases as exercises.

Case (1) splits into three subcases: (2.1) y > 0, (2.2) y = 0, and
(2.3) y < 0.

We will do only (2.3). In this case, |x| = x and |y| = −y so

|x| |y| = −xy

Also, multiplication of the inequality x > 0 by y reverses it, showing
that xy < 0. Hence

|xy| = −xy

Hence, in this case, |xy| = |x| |y|

The kind of absolute value inequalities we need are typically of
the form

(6) |x| < a

which is equivalent with

−a < x < a

The inequality
a < |x|

is equivalent with
x > a or − x > a

Example 8. Find all x such that

(7) |4 − 3x| < .1

Solution: We reason
−.1 < 4 − 3x < .1

−4.1 < −3x < −3.9

4.1

3
> x >

3.9

3
= 1.3

This shows that if x satisfies (7), then x ∈ (1.3, 4.1
3

). We leave it
as an exercise to show that conversely, every x in this interval does
satisfy (7).
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A very important absolute value inequality is the triangle inequal-
ity which states that for all real numbers x and y

(8) |x + y| ≤ |x| + |y|
We leave the case-by-case proof as an exercise.

Exercises

In doing inequality problems, you should quote the relevant in-
equality axioms or properties in use, (I1-I4, E1-E8) but you need not
quote any of the axioms or properties from Chapter 1.

(1) In each part, solve the inequality and prove your answer.
Justify any application of functions (such as taking logs, ex-
ponentials, square roots, etc.) in terms of increasing and
decreasing.
(a) 2x + 7 < 3x + 4 ans. (3,∞)
(b) |2y − 8| < .0002 ans. (3.9999, 4.0001)
(c) ln(3− 4t) < 7 ans. ((3− e7)/4, 3/4). (Note: lnx is

defined only if x > 0.)
(d) x

3x+1
> 1

3
ans. (−∞,−1

3
)

(e) ((.5)x − 3)1/3 < 5 ans. ( ln(128)
ln(.5)

,∞)

(f) (2x − 1)−1/3 > 2 ans. (1
2
, 9

16
)

(g) 0 ≤ arccos(3x + 1) < π
3

ans. (−1
6
, 0] Hint: Graph

y = cos x over [0, π
3
].

(h) 0 ≤ arcsin(3x+1) < π
4

ans. [−1
3
,
√

2−2
6

) Hint:Graph
y = sin x over [0, π

4
].

(i) 1
arctan x

< .001 ans. (−∞, 0) ∪ (tan(1000),∞)

(j) (.4)2x−1 < 7x ans. ( ln .4
2 ln .4−ln 7

,∞)

(k) x2−3
x

> x − 2 ans. (−∞, 0) ∪ (3
2
,∞). (See Exam-

ple 5 on page 25.)

(l) x2

x+1
< x + 2. (See Example 5 on page 25.)

In the following 7 exercises, you are asked to prove
properties (E1)-(E8). In these exercises, you may only
use one of the properties (E1)-(E8) if it was proved in one of
the preceding exercises. Otherwise, you should use only
the axioms.

(2) Prove property (E1). Hint: Try adding c onto both sides of
a < b and b onto both sides of c < d.
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(3) Prove property (E2). Show by example that (E2) can fail
if c < 0. Hint: Reason as in the preceding exercise, using
multiplication instead of addition.

(4) Can we subtract inequalities? I.e. if a < b and c < d does
it follow that a − c < b − d? If so, prove it. If not, find a
counter example.

(5) Can we divide positive inequalities? I.e. if 0 < a < b and
0 < c < d does it follow that a/c < b/d? If so, prove it. If
not, find a counter example.

(6) Suppose that a < b.
(a) Prove that −b < −a. Hint: Begin by adding −b onto

both sides of a < b.
(b) Prove (E3). Hint: From (a), −c > 0.
(c) Prove (E5).
(d) Prove (E7). Hint: Consider three cases: a > 0, a = 0,

and a < 0. Which axiom allows you to break this up
into these three cases?

(e) Use (E7) to prove that 1 > 0. Then prove that 2, 3, and
4 are all positive.

(7) (a) Prove that if b > 0, then b−1 > 0. Hint: Either b−1 > 0
or b−1 = 0 or b−1 < 0. If you can show that the latter
two conditions are impossible, then the first must hold.

(b) Prove (E4). Hint: Begin by multiplying both sides of
a < b by b−1.

In the remaining exercises you may use both the
axioms and properties (E1)-(E8).

(8) Prove that the average of two numbers lies between them
I.e. if a < b then a < a+b

2
< b. Hint: Do each inequality

separately.
(9) Let a and b be positive numbers. Prove that

(i)
√

ab ≤ a + b

2

(ii)
√

a2 + b2 ≤ a + b

(iii)
a

b
+

b

a
≥ 2

(iv) If 0 < a < b then a2 < ab < b2
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(10) Do the remaining subcases from case (1) of Example 6 in the
text.

(11) Do Case (2) from Example 6.
(12) Do Case (3) from Example 6.
(13) Prove that for all x and y, y 6= 0,

∣

∣

x

y

∣

∣ =
|x|
|y|

Split your proof into three cases as in Example 6. Your
instructor may assing you to do only certain of these cases.

(14) The purpose of this exercise is to understand why the triangle
inequality holds.
(a) Find a non-zero value of y such that |2 + y| = 2 + |y|

and a value such that |2 + y| < 2 + |y|.
(b) Describe (i) the set of all y such that |2 + y| = 2 + |y|

and (ii) the set of all y such that |2 + y| < 2 + |y|.
(c) Suppose x > 0. For which y is |x + y| = |x| + |y|?

|x + y| < |x| + |y|? Note that from Axiom I1, this
accounts for all y.

(d) Answer the questions from (c) under the assumption
that x = 0. Next answer them under the assumption
that x < 0.

Remark This all amounts, more or less, to a proof of in-
equality (7). The reason that it is only ”more or less” is that
you weren’t ask you to prove the answers to (c) and (d).

(15) Graph the set of points (x, y) defined by

(a) |x| = |y|
(b) |x| + |y| = 1

(c) |xy| = 2

(d) |x| − |y| = 2

(16) In parts (a)-(g), find all intervals I for which the stated in-
equality holds for all elements x and y of I, x < y. Illustrate
your answer with a specific value of x and y. Prove your
answer using calculus.
(a) x3 < y3

(b) x−1/3 < y−1/3

(c) x4 < y4
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(d) ln x < ln y

(e) ye−y2

< xe−x2

(f) y3 + 6y2 + 9y < x3 + 6x2 + 9x
(g) x

x2+1
< y

y2+1


