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CHAPTER 4

Limits of Sequences

In this section we study limits of sequences. As a preliminary
definition, we might define a sequence to be a function whose domain
consists of the set N natural numbers. Thus, when we refer to “the
sequence”

an = n/(n2 − 3)

we are implicitly stating that we will consider this expression only for
n = 1, 2, 3, . . . . Hence, the preceding equality does define a sequence,
despite the fact that the denominator is zero if n =

√
3.

At times it is more convenient to consider the sequence as begin-
ning with values of n other than 1. For example, n = 0 is a common
choice. Or if we were to study the following expression, we might
want to begin with n = 6 to avoid dividing by 0.

an =
n

n − 5

At times, one even might want to begin with a negative number.
Thus, we modify our original definition as follows. Recall that the
set Z of integers is the set consisting of 0 together with ±n where
n ∈ N. Hence

Z = {0,±1,±2,±3, . . . }.

Definition 1. A sequence is a function whose domain consists
of all n ∈ Z, n ≥ a.

We will, however, adopt the convention that unless otherwise in-
dicated, the domain of all sequences is considered to be the set of
natural numbers.

We will discuss limits in terms of approximation theory. In sci-
ence, when we make a statement such as “the value A is 4.7 ± .01,”
we mean that although we do not know the value of A exactly, we are
certain that A is between 4.7 − .01 and 4.7 + .01. When discussing
approximations, we will always assume that the error term is
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54 4. LIMITS OF SEQUENCES

positive since negative values are accounted for by the “±.” Thus,
we will never say A = 4.7±(−.01) as this is the same as A = 4.7± .01

In general, for ǫ > 0, we define

A = B ± ǫ

to mean1

B − ǫ < A < B + ǫ

which is the same as either of the following two equivalent statements

−ǫ < A − B < ǫ

|A − B| < ǫ.

To relate this to limits, consider the sequence

an =
n

n + 1

Below are a few values of an:

n 6 11 16 21 26 31 36 41 100 1000
an .857 .917 .941 .955 .963 .969 .973 .976 .990 .9990

It appears that for large values of n, an is approximately equal to
1. For example,

|a16 − 1| = |.917 − 1| = .083 < .1

Hence

a16 = 1 ± .1

Similarly,
|a100 − 1| = |.990 − 1| = .01 < .02

|a1000 − 1| = |.9990 − 1| = .001 < .002

so a100 = 1 ± .02 and a1000 = 1 ± .002.
The next example illustrates that an is a very close approximation

to 1 for all sufficiently large values of n.

Example 1. Find a value of N such that
n

n + 1
= 1 ± 10−5

for n > N . Prove your answer.

1Typically, A = B ± ǫ means B − ǫ ≤ A ≤ B + ǫ. Our convention excludes

the possibility of equality.
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Scratch work: We want

| n

n + 1
− 1| < 10−5

| 1

n + 1
| < 10−5

Since the term inside the absolute value is positive, this is equivalent
with

1

n + 1
< 10−5

n + 1 > 105

n > 105 − 1 = 99, 999

For our formal solution, we state a value of N and prove that it
works by reversing the above sequence of arguments.

Solution: Let N = 99, 999 and assume n > N . Then

n > 105 − 1

n + 1 > 105

1

n + 1
< 10−5

| 1

n + 1
| < 10−5

| n

n + 1
− 1| < 10−5

showing that
n

n + 1
= 1 ± 10−5

as desired.

What if we want
n

n + 1
= 1 ± 10−10?

The argument from Example 1 shows that this will hold for all n >
1010 − 1. More generally, for any ǫ > 0,

n

n + 1
= 1 ± ǫ

holds for n > 1
e
− 1.
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This shows that n/(n+1) will approximate 1 to any desired degree
of accuracy for all sufficiently large n. How large n must be will, of
course, depend on the accuracy desired.

Example 1 illustrates a general principle: if an is a sequence such
that limn→∞ an = L, then an will approximate L as closely as desired
for all sufficiently large n. In fact, an informal definition of limit
might read, “ limn→∞ an = L provided an gets arbitrarily close to
L as n gets large.” This means exactly that an approximates L as
closely as desired. Thus, we adopt the following statement as our
“official” definition of limit for sequences:

Definition 2. Let an be some sequence of numbers and let L be a
number. We say that limn→∞ an = L provided that for every number
ǫ > 0, there is a number N such that

(1) |an − L| < ǫ

for all n > N .

Remark Occasionally students feel that it is not really correct to say
that

lim
n→∞

n

n + 1
= 1

because n/(n + 1) never actually equals 1. They would prefer to say
that the limit is “very, very close to” 1. This is not correct. The limit
refers to the number that is being approximated; not the numbers
doing the approximation. There is one, and only one, number that
the terms n/(n + 1) approximate better and better as n gets larger
and larger, namely 1. Actually, the fact that a convergent sequence
can approximate only one number is an important property of limits.
We will leave the proof of this fact as an exercise (Exercise 31).

Proposition 1. A sequence can have only one limit: if
limn→∞ an = L and limn→∞ an = M , then L = M .

In a number of exercises, you will be asked to prove statements
such as limn→∞ an = L for some specific sequence an and some num-
ber L “using ǫ” i.e. directly from the definition. The formal solution
to such a problem will typically involve the following steps:

(1) Assume that a value of ǫ > 0 is given.
(2) State an appropriate value of N . It will be given by some

expression involving ǫ.



4. LIMITS OF SEQUENCES 57

(3) Prove that the stated value of N really works i.e. assume
that n > N and prove that |an − L| < ǫ.

Example 2. Find

lim
n→∞

n4

n5 + 7

Find a number N such that n4

n5+7
approximates the limit with error

less than .001 for all n > N . Prove, using ǫ, that your limit is correct.

Scratch work: Since n5+7 grows like n5 our fraction grows (actually
decays) like n4/n5 = 1/n. Hence, we guess that the limit is 0.

To prove our guess we we must show that for any given ǫ > 0,
n4

n5+7
= 0 ± ǫ for all sufficiently large n. i.e.

(2)

∣

∣

n4

n5 + 7
− 0

∣

∣ < ǫ

n4

n5 + 7
< ǫ

But

n4

n5 + 7
<

n4

n5
=

1

n

Thus, formula (2) will be valid if 1/n < ǫ, i.e. n > 1/ǫ. In particular,
we obtain ±.001 accuracy for n > 1000.

Formal Solution: For n ∈ N

n5 < n5 + 7

1

n5 + 7
<

1

n5

n4

n5 + 7
<

n4

n5
=

1

n
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Now, let ǫ > 0 be given and let N = 1/ǫ. Assume that n > N
Then

n >
1

ǫ
1

n
< ǫ

n4

n5 + 7
<

1

n
< ǫ

∣

∣

n4

n5 + 7
− 0

∣

∣ < ǫ

This fulfills the requirements for the definition of the limit.
The first part of the problem is solved by letting ǫ = .001, in

which case N = 1000.

Remark: In our solution to Example 2, we used the observation that
for n > 1, 000

n4

n5 + 7
<

1

n
< .001

In general, if we are trying to show that some sequence an can be
made less than ǫ, we often try to find some relatively simple quantity
“?” (which will depend on n) such that

an <? < ǫ

for all sufficiently large n.

Example 3. Find the following limit and prove your answer using
ǫ.

lim
n→∞

2n3

n3 + 5n + 1

Scratch Work: Considering only the fastest growing terms suggests
that our fraction grows like 2n3/n3 = 2. Hence we guess the limit to
be 2.
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For the proof, we must show that for any given ǫ there is an N
such that for all n > N ,

(3)

∣

∣

2n3

n3 + 5n + 1
− 2

∣

∣ < ǫ

∣

∣

−10n − 2

n3 + 5n + 1

∣

∣ < ǫ

10n + 2

n3 + 5n + 1
< ǫ

(We omitted the absolute values in the last line since the quantities
involved are clearly positive.)

We seek a simple quantity “?” such that, for large enough n,

10n + 2

n3 + 5n + 1
<? < ǫ.

Making either the denominator smaller or the numerator larger
increases the size of a fraction. Hence, for n > 2,

10n + 2

n3 + 5n + 1
<

10n + n

n3 + 5n + 1
<

11n

n3
=

11

n2
.

Hence, inequality (3) holds if n > 2 and

11

n2
< ǫ

n2

11
>

1

ǫ

n >
√

11/ǫ

Formal Solution: Let ǫ > 0 be given and let N be the larger of
√

11/ǫ and 2. Assume that n > N . Then from the “scratch work”,

| 2n3

n3 + 5n + 1
− 2

∣

∣ <
11

n2
< ǫ

Thus the requirements for the definition of the limit are fulfilled.

Remark: The proof in Example 3 is typical of many limit proofs.
Often to prove that limn→∞ an = L we:

(1) Compute, and simplify |an − L| by, for example, putting
terms over common denominator and/or factoring.
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(2) Eliminate the absolute value by determining the sign of an−
L for large n.

(3) Use rates of growth to estimate the growth of an − L so as
to show that it may be made less than ǫ

A common mistake is to forget to subtract the limit before esti-
mating the rate of growth. For example,

2n3

n3 + 5n + 1
<

2n3

n3
= 2

All this tells us is that the limit, if it exists, is at most 2.

Often the techniques from Chapter 3 play a role, as in the next
example.

Example 4. Find the following limit and prove your answer using
ǫ.

lim
n→∞

2n3 − 6n2

n3 − 3n2 + 5n − 1

Scratch Work: Considering only the fastest growing terms suggests
that our fraction grows like 2n3/n3 = 2. Hence we guess the limit to
be 2.

For the proof, we must show that we can approximate 2 to within
±ǫ for any ǫ > 0. This means

(4)

∣

∣

2n3 − 6n2

n3 − 3n2 + 5n − 1
− 2

∣

∣ < ǫ

∣

∣

2n3 − 6n2 − 2(n3 − 3n2 + 5n − 1)

n3 − 3n2 + 5n − 1

∣

∣ < ǫ

∣

∣

−10n + 2

n3 − 3n2 + 5n − 1

∣

∣ < ǫ

We seek a simple quantity “?” such that, for large enough n,

∣

∣

−10n + 2

n3 − 3n2 + 5n − 1

∣

∣ <? < ǫ.

We can make our fraction larger by making the denominator smaller.
Specifically, we find positive numbers C and No such that

Cn3 < n3 − 3n2 + 5n − 1

for all n > No.
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We choose No so that both of the following hold for n > No:

3n2 <
1

3
n3

1 <
1

3
n3

The first inequality is valid for n > 9 and the second for n > 31/3 ≈
1.44. For n > 9, both are valid and

n3 − 3n2 + 5n − 1 > n3 − 3n2 − 1

> n3 − 1

3
n3 − 1

3
n3 =

1

3
n3

Hence we may choose No = 9 and C = 1/3.
In particular the denominator is positive for such n. Furthermore,

for n ∈ N, −10n + 2 < 0. Hence, for n > 6,

(5)

∣

∣

−10n + 2

n3 − 3n2 + 5n − 1

∣

∣ =
10n − 2

n3 − 3n2 + 5n − 1

<
10n

n3/3

<
30n

n3
=

30

n2

Hence, inequality (4) holds if

30

n2
< ǫ

n2

30
>

1

ǫ

n >
√

30/ǫ

Formal Solution: We should first prove inequality (5). However,
since this is not the main point of the problem, we will allow ourselves
(and the student) to use the “scratch work” as the proof.

Now let ǫ > 0 be given and let N be the larger of
√

30/ǫ and 9.
Assume that n > N . Then from the “scratch work”,

| 2n3 − 6n2

n3 − 3n2 + 5n − 1
− 2

∣

∣ =
10n − 2

n3 − 3n2 + 5n − 1
<

10n

n3/3
< ǫ

Thus the requirements for the definition of the limit are fulfilled.
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What if we try to prove something which is false?

Example 5. Attempt an ǫ-proof of the following (incorrect) limit
statement. Describe carefully where your proof breaks down.

lim
n→∞

2n

n + 1
= 1

Solution: Let ǫ > 0 be given. If the limit statement is true there is
an N such that the following holds for n > N :

∣

∣

2n

n + 1
− 1

∣

∣ < ǫ

∣

∣

n − 1

n + 1

∣

∣ < ǫ

For n ∈ N the fraction is positive and the absolute value may be
dropped:

n − 1

n + 1
< ǫ

n − 1 < ǫ(n + 1)

n − 1 < ǫn + ǫ

(1 − ǫ)n < 1 + ǫ

If ǫ < 1, we may divide by 1 − ǫ:

(6) n <
1 + ǫ

1 − ǫ
.

But this inequality says that we achieve the desired accuracy only
if n is sufficiently small. Hence, for large n, 2n/(n + 1) does not
approximate 1 to the desired accuracy for all large n, showing that
the limit is not 1.

If you see a difference of two square roots, either in a numerator
or in a denominator, it is usually “wise to rationalize”-i.e. multiply
both numerator and denominator by the sum of the square roots.

Example 6. Find the following limit and prove your answer using
ǫ.

lim
n→∞

(
√

n −
√

n + 1).
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Scratch Work: To find the limit, we write

√
n −

√
n + 1 = (

√
n −

√
n + 1)

√
n +

√
n + 1√

n +
√

n + 1

=
(
√

n)2 − (
√

n + 1)2

√
n +

√
n + 1

=
−1√

n +
√

n + 1

As n → ∞ this will tend to zero. Furthermore,

∣

∣

√
n −

√
n + 1 − 0

∣

∣ =
1√

n +
√

n + 1
<

1√
n

This will be less than ǫ if
√

n > 1/ǫ i.e. n > 1/ǫ2.

Formal Solution: We claim that the limit is 0. To prove this, let
ǫ > 0 be given and set N = 1/ǫ2. Suppose that n > N . Then from
the “scratch work”

∣

∣

√
n −

√
n + 1 − 0

∣

∣ <
1√
n

< ǫ.

Thus, the conditions for the definition of limit are fulfilled.

Example 7. Guess the following limit and prove your answer
using ǫ.

lim
n→∞

n2

2n2 + 3n + n ln n
.

Scratch Work: The denominator grows like 2n2 since both 3n and
n ln n grow more slowly. Hence, the fraction behaves like n2/(2n2) =
1/2. Hence, the limit should be 1/2.

For the proof, we compute

∣

∣

n2

2n2 + 3n + n ln n
− 1

2

∣

∣ =
∣

∣

−3n − n ln n

2(2n2 + 3n + n ln n)

∣

∣

=
3n + n ln n

2(2n2 + 3n + n ln n)

<
3n + n ln n

4n2
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Both 3n and n ln n grow more slowly than n3/2. Specifically

(7) n ln n < n3/2

is true if ln n < n1/2 which, as the reader may show, holds for n >
(16)2. (See Example 5 of Chapter 3.) Also

(8) 3n < n3/2

holds for n > 9. Hence, for n > (16)2,

(9)

3n + n ln n

4n2
<

n3/2 + n3/2

4n2

=
1

2n1/2

This will be less than ǫ if n1/2 > 1/(2ǫ) i.e. n > 1/(4ǫ2). Thus, we
may choose N to be any number larger than both 1/(4ǫ2) and (16)2 .

Formal Solution: From the argument in the “scratch work” (7),
(8), and (9) all hold for n > (16)2.

Now, let ǫ > 0 be given and let N be the larger of (16)2 and
1/(4ǫ2) and let n > N . Then

n > 1/(4ǫ2)

n1/2 > 1/(2ǫ)

1

2n1/2
< ǫ

Furthermore, from the scratch work

∣

∣

n2

2n2 + 3n + n ln n
− 1

2

∣

∣ =
3n + n ln n

2(2n2 + 3n + n ln n)

<
1

2n1/2
< ǫ

Thus, the conditions for the definition of limit are fulfilled.

Not all sequences have a limit. A sequence which has a limit
converges and one which does not diverges. The following example
illustrates one particular type of divergence–going to infinity.

Example 8. I have a bank account that pays 5% interest per
year, credited on Dec. 31. I deposit $1 on Jan. 1 of year 0 and make
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no further deposits. On Jan. 1 of year 1, I have 1 + (.05)1 = 1.05
dollars on deposit. On Jan. 1 of year 2, I have

P2 = 1.05 + (.05)(1.05) = (1.05)(1.05) = (1.05)2

dollars. After n years, I will have

(10) Pn = (1.05)n

dollars.

(1) How many years does it take for my balance to be over $100?
$10,000? $100,000? $1,000,000?

(2) Prove that for any positive number M there is an n such that
Pn > M . Thus, there is no limit to the amount of money I
will eventually have in my account, as long as I leave it on
deposit long enough.

Solution (1) To have more than $100, we need

(11)

(1.05)n > 100

ln ((1.05)n) > ln(100)

n ln(1.05) > ln(100)

n >
ln(100)

ln(1.05)
= 40.99

Hence, it would take 41 years. Similarly, to get:

$10, 000 we need n >
ln(10, 000)

ln(1.05)
≈ 81.98 years

$100, 000 we need n >
ln(100, 000)

ln(1.05)
≈ 102.47 years

$1, 000, 000 we need n >
ln(1, 000, 000)

ln(1.05)
≈ 122.97 years

Hence, after only 123 years our heirs will be millionaires!

Solution (2) For the proof we do the work from part (1) in the
general case. Suppose we want $M . Let n be a natural number such
that

n >
ln M

ln(1.05)
.
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Then, reversing the steps in (11):

n >
ln M

ln(1.05)

n ln(1.05) > ln M

ln ((1.05)n) > ln M

(1.05)n > M

Example 8 demonstrates what we mean by limn→∞ an = ∞. The
balance in our account grows without bound; for any value M we will
eventually have more than $M in the account as long as we wait suf-
ficiently long. Certainly, however, no matter how large, the balance
always much closer to 0 than to infinity! The “official” definition of
tending to infinity is:

Definition 3. Let an be a sequence. We say that limn→∞ an = ∞
if for all M > 0 there is an N such that

an > M

for all n > N .

We stress that infinity is not a limit: going to infinity is a
special type of divergence.

Proving that limn→∞ an = ∞ involves assuming that a constant
M > 0 is given and showing that for sufficiently large N , an > M .
Often we find some simple quantity “?” such that

an >? > M

as in the following example.

Example 9. Prove, using M , that

lim
n→∞

n4

2n2 + 3n + n ln n
= ∞.

Scratch Work: Let M > 0 be given. We seek a quantity “?” such
that

n4

2n2 + 3n + n ln n
>? > M

for all sufficiently large n. Making the denominator larger makes the
fraction smaller. Since the fastest growing term in the denominator
is n2, we seek constants C and No such that

2n2 + 3n + n ln n < Cn2
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for all n > No. Since, for n > 1, n < n2 and ln n < n, we see

(12) 2n2 + 3n + n ln n < 2n2 + 3n2 + n2 = 6n2.

Hence
n4

2n2 + 3n + n ln n
>

n4

6n2
=

n2

6

This is > M provided n >
√

6M . We also need n > 1 for the validity
of inequality (12).

Formal Solution: Let M > 0 be given and let N be the larger of
1 and

√
6M . Let n ∈ N satisfy n >

√
6M . Then, from the “scratch

work”
n4

2n2 + 3n + n ln n
>

n4

6n2
=

n2

6

>
(
√

6M)2

6
= M.

Thus, the conditions for the definition of limn→∞ an = ∞ are fulfilled.

A sequence can also diverge by tending to −∞. We could define
this notion in a manner similar to our definition of tending to ∞.
However, the simplest definition is just:

Definition 4. Let an be a sequence. We say that limn→∞ an =
−∞ if limn→∞−an = ∞.

The following example demonstrates how to prove general theo-
rems using the definition of limit.

Example 10. Suppose that limn→∞ an = 2. Prove, using ǫ, that
limn→∞ a2

n = 4.

Scratch Work: Let ǫ > 0 be given. We want to show that for all
sufficiently large n,

|a2
n − 4| < ǫ

|an − 2| |an + 2| < ǫ

Now an−2 can be made as small as we wish while, for large n, an +2
should be near 4. More precisely, we may find an N so that an = 2±1
for n > N . Hence,

1 < an < 3

3 < an + 2 < 5
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Thus, for n > N ,

|an − 2| |an + 2| < 5|an − 2|

This is less than ǫ if |an−2| < ǫ/5 which will be true for all sufficiently
large N .

Formal Proof: Let ǫ > 0 be given. Since limn→∞ an = 2, there is
an N such that for n > N

|an − 2| < ǫ/5

Furthermore there is an No such that for n > No

|an − 2| < 1

−1 < an − 2 < 1

1 < an + 2 < 5

|an + 2| < 5

Let N1 be the larger of N and No. Then for n > N1,

|a2
n − 4| = |an − 2| |an + 2| < (ǫ/5)5 = ǫ

Hence the requirements for the definition of limit are fulfilled.

Exercises

(1) The figure below shows the first 20 terms of a sequence an

which, apparently, is converging to 1. Assume that the terms
not shown are closer to one than any of the shown terms.
What (approximately) is the first n where we become con-
fident that all of the rest of the terms are within ±.2 of 1?
±.1? ±.05? ±.025? (Note that the ‘tick marks’ on the ver-
tical axis are .1 apart.) Explain in your own words, how
this problem demonstrates the general definition of limit of
a sequence.
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(2) For each sequence below, find the limit and prove your an-
swer using ǫ.
(a) limn→∞(1 − 1/n2)

(b) limn→∞
3n2

n2+1

(c) limn→∞(
√

n2 + 1 −
√

n2 + 2) (See Example 5)
(d) limn→∞(

√
n2 + 1 − n)

(e) limn→∞
2n

n2+n−5
.

(f) limn→∞
2n ln n

n2+n−5
. (See Example 6)

(g) limn→∞

(

2
3

)n
Hint: Use logs.

(h) limn→∞
2n

n!
. Hint: See Exercise 8, Chapter 3.

(i) limn→∞
1+(−1)n

n
+ 7

(j) limn→∞
n3

2n3−7

(k) limn→∞
2n

2n+n−5
.

(l) limn→∞
2n

3(2n)+n−5
.

(m) limn→∞
sin n
n2+1

(n) limn→∞
(−1)n sin n

n2+1

(o) limn→∞
n3

2n3+n ln n+1



70 4. LIMITS OF SEQUENCES

(p) limn→∞
n3

2n3−n2+2

(q) limn→∞
n√

n2+1
Hint: Put an −L over a common denom-

inator and then rationalize the numerator.
(r) limn→∞

√
4n+1
n

(s) limn→∞

√
n+1
√

n

(t) limn→∞
5n3−10

n3+n2−1

(3) In Example 7 on page 63, we used lnn <
√

n for n > (16)2.
Why would it not work to use lnn < n instead?

(4) Prove, using ǫ, that for all k > 0, limn→∞
1

nk = 0.
(5) Prove that the answer to part (b) of Exercise 2 is not 4.

Reason as in Example 4.
(6) The statements limx→∞ f(x) = L and limn→∞ an = L mean

slightly different things. In the first statement, f(x) is a
function that is defined for all sufficiently large real numbers
x and the limit considers all such x. In the second statement,
an is a sequence, implying that n assumes only integral val-
ues. As a demonstration of this, explain, using a graph of
f(x) = cos(2πx), why the first limit below exists and the
second does not. What is the value of the first limit?

lim
n→∞

cos(2πn)

lim
x→∞

cos(2πx)

Remark: We define limx→∞ f(x) = L as follows

Definition 5. Let f(x) be a function that is defined for
all real numbers x > 0 and let L be a number. We say that
limx→∞ f(x) = L provided that for every number ǫ > 0, there
is a real number N such that

|f(x) − L| < ǫ

for all x > N .

(7) Use the preceding definition to prove the following limit
statements.

(a) lim
x→∞

x

x + 1
= 1

(b) lim
x→∞

2x5

x5 − 7
= 2
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(8) Let f be a function that is defined for all positive real num-
bers x. Suppose that limx→∞ f(x) = L. Prove (using ǫ)
that limn→∞ f(n) = L where “f(n)” denotes the sequence
an defined by an = f(n) for all n ∈ N.

(9) We say that an is bounded from above if there is a number M
such that an < M for all n, in which case M is referred to as
an upper bound for an. The following sequence of arguments
proves that if L = limn→∞ an exists, then an is bounded from
above. Give a reason (or proof) for each statement.

There is a number N such that L − 1 < an < L + 1 for
all n > N .

There is a number Mo such that an < Mo for all 1 ≤ n ≤
N , n ∈ N.

Let M be the larger of L + 1 and Mo. Then M is an
upper bound for an.

(10) Let an be a convergent sequence. Prove that an is bounded
from below. Use a similar argument to that sketched in the
preceding exercise.

(11) Each of the following sequences an tends to ∞. Demonstrate
this by finding a value of N such that for all n > N (i)
an > 100, (ii) an > 1000 and (iii) an > 1, 000, 000. Finally,
prove using M that limn→∞ an = ∞.
(a) 2n.
(b) 2n

ln n
. Hint: For sufficiently large n, ln n < n < (1.5)n.

(c) ln n.

(d) n3

n−1
.

(e) n5

n2−n−ln n
.

(f) n3

n+1
.

(g) n5

n2+n+1
.

(12) Using logs, prove the following:
(a) For a > 1, limn→∞ an = ∞.
(b) For 0 < a < 1, limn→∞ an = 0.

(13) Let x be a positive number. We note that

(1 + x)2 = 1 + 2x + x2 > 1 + 2x

Hence

(1 + x)3 = (1 + x)(1 + x)2

> (1 + x)(1 + 2x) = 1 + 3x + 2x2 > 1 + 3x
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Similarly

(1 + x)4 = (1 + x)(1 + x)3

> (1 + x)(1 + 3x) = 1 + 4x + 3x2 > 1 + 4x

(a) Use the fact that (1 + x)4 > 1 + 4x to prove that
(1 + x)5 > 1 + 5x.

(b) Use the fact that (1 + x)5 > 1 + 5x to prove that
(1 + x)6 > 1 + 6x.

(c) Suppose that we have succeeded in proving that
(1+x)n > 1+nx for some value of n. Use this to prove
that (1 + x)n+1 > 1 + (n + 1)x.
Warning: You cannot simply replace n by n+1 since our
assumption is only that you have proved the inequality
for some n, not all n. Instead, you should use reasoning
similar to that used in (a).

(d) Explain how it follows from (b) that (1 + x)n > 1 + nx
for all n.

(e) Use (c) to prove that for all a > 1, limn→∞ an = ∞.

Remark: The proof sketched in (b) is a Mathematical In-
duction argument. Mathematical Induction is a method of
proving an infinite number of statements, one at a time. We
first prove the first satement. We then use the first to prove
the second, use the second to prove the third, use the third to
prove the fourth, etc. To prove all of the statements we need
to prove that this process can be continued indefinitely. In
practice this means assuming that we have proved the theo-
rem for some n (but not yet for n + 1). We then use the nth

case to prove the (n + 1)st case.

(14) Suppose that limn→∞ an = 7. Use ǫ to prove that
(a) limn→∞ a2

n = 49
(b) limn→∞

1
an+1

= 1
8

(c) limn→∞

√
an + 2 = 3 (Hint: Rationalize)

(d) limn→∞
an

an+7
= 1

2

(15) Suppose that limn→∞ an = −∞. Prove that for each M < 0,
there is an N such that an < M for all n > N . Hint: In the
text we defined limn→∞ an = −∞ by limn→∞−an = ∞.
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(16) Prove the converse of the preceding exercise: i.e. Suppose
that for all M < 0, there is an N such that an < M for all
n > N . Prove that limn→∞ an = −∞.

(17) Prove, using ǫ, that limn→∞ an = L if and only if limn→∞(an−
L) = 0, i.e. first prove that if limn→∞(an − L) = 0 then
limn→∞ an = L. Then prove that if limn→∞ an = L then
limn→∞(an − L) = 0.

(18) Suppose that limn→∞ an = L. Prove (using ǫ) that
limn→∞(−an) = −L.

(19) Suppose that limn→∞ |an| = 0. Does it follow that limn→∞ an =
0? Prove your answer.

(20) Suppose that limn→∞ an = 0. Does it follow that
limn→∞ |an| = 0? Prove your answer.

(21) Suppose that limn→∞ |an| = 1. Does it follow that
limn→∞ an exists? Prove your answer.

(22) Suppose that limn→∞ an = L. Prove, using ǫ, that limn→∞ 5an =
5L.

(23) If C is any constant, then limn→∞ C = C–i.e. if an = C for
all n, then limn→∞ an = C.

(24) Suppose that limn→∞ an = L. Prove (using ǫ) that for any
constant C, limn→∞ Can = CL.

(25) Suppose that for all n, an ≤ bn ≤ cn and limn→∞ an =
limn→∞ cn = L. Prove, using ǫ, that then limn→∞ bn = L.
Hint: an − L ≤ bn − L ≤ cn − L.

(26) Suppose that limn→∞ an = L where L > 0. Prove that there
is an N such that an > 0 for all n > N . Hint: How close to
L must an be to guarantee that an > 0. What tells you that
can get this close?

(27) (a) The following statement is false. Find an example that
demonstrates its falsehood. “If an < 0 for all n and
limn→∞ an exists, then limn→∞ an < 0.”

(b) Prove that if an < 0 for all n and limn→∞ an exists, then
limn→∞ an ≤ 0. Hint: This is almost immediate from
the result of Exercise 26. Explain.

(28) Suppose that limn→∞ an = L where L < 0. Prove that there
is an N such that an < 0 for all n > N .

(29) Use Exercise 28 to prove that if an > 0 for all n and limn→∞ an

exists, then limn→∞ an ≥ 0.
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(30) Suppose that an > L for all n. Prove that limn→∞ an ≥ L.
Hint: The result of Exercises 17 and 29 might help.

(31) Prove Proposition 1. Hint: For your proof, assume that
L 6= M . Let ǫ = |L − M |.

(32) Suppose that an and bn are sequences where limn→∞ an = 0.
Suppose also that and |bn| < 1 for all n. Prove, using ǫ, that
limn→∞ anbn = 0.

(33) Let an be a sequence of nonnegative real numbers such that
limn→∞ an = 0. Prove, using ǫ, that limn→∞

√
an = 0.

(34) Let an be a convergent sequence of nonnegative real numbers.
Prove that limn→∞

√
an =

√
limn→∞ an.

Hint: Let L = limn→∞ an. You may assume L > 0 as the
L = 0 case was done in the preceding exercise. Rationalize
|√an −

√
L| and note that

√
an +

√
L ≥

√
L.

(35) Suppose that limn→∞ an = 1. Prove, using ǫ, that limn→∞ 1/an =
1. Hint: First prove that there is an N such that .5 ≤ an ≤
1.5 for all n > N . Then simplify |1/an − 1|.

(36) Let limn→∞ an = L . Prove that limn→∞ an+1 = L.
(37) Let an be such that limn→∞ an = ∞. Prove, using ǫ, that

limn→∞
1

an
= 0.

(38) Is the converse of Exercise 37 true? That is, if limn→∞ 1/an =
0, does it follow that limn→∞ an = ∞. If not, under what
circumstances would it follow? Prove your answers.

(39) Most mathematical theorems can be expressed in the form
“If P, then Q” where P and Q are statements. (A statement is
a sentence that has the potential of being either true or false.)
For example, the converse to the statement in Exercise 37 is
the statement in Exercise 38.

Below are some true statements. For each statement,
formulate the converse statement and state whether or it is
true. If false, give a counter example.
(a) If limn→∞ an exists, then limn→∞ can exists for all con-

stants c.
(b) If limn→∞ an exists and limn→∞ bn exists, then

limn→∞(an + bn) exists.
(c) If limn→∞ an exists, then an is bounded.
(d) If limn→∞ an = ∞, then an is unbounded.
(e) If limn→∞ an = ∞, then an is not bounded from above.
(f) Suppose that limn→∞ an = b. Then limn→∞(an−b) = 0.


