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CHAPTER 7

Positive Term Series

One very important goal in mathematics is computation. The
number π, for example, has been computed to thousands of deci-
mals. How is this done? It turns out that there are some remarkable
formulas that can be used to approximate π. For example, the fol-
lowing formula, which comes from the theory of Fourier series, can
be used to approximate π2/6 and, thus, π.

(1)
π2

6
= 1 +

1

22
+

1

32
+ · · · + 1

n2
+ . . .

This formula means that we may approximate π2/6 as accurately
as desired by summing sufficiently many of the terms on the right
of the equality. Let sn be the sum of the first n terms on the right.
Thus, for example, using 4 terms:

(2)
π2

6
≈ s4 = 1 +

1

22
+

1

32
+

1

42
= 1.423

Using 6 terms produces

π2

6
≈ s6 = 1 +

1

22
+

1

32
+

1

42
+

1

52
+

1

62
= 1.4911

Ten terms produces

π2

6
≈ s10 = 1 +

1

22
+

1

32
+ · · · + 1

102
= 1.5497

Using 100 terms (and a computer) we find that

(3)
π2

6
≈ s100 = 1 +

1

22
+

1

32
+ · · · + 1

1002
= 1.6349

The approximations we just produced are essentially useless un-
less we can determine their accuracy. We could, of course, simply
compare them with the value of π2/6 computed using, say, a calcula-
tor. However, our goal is to understand how calculators and comput-
ers can compute numbers such as π2/6. Hence we must assume that
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98 7. POSITIVE TERM SERIES

we have no means of computing the answer other than using the se-
ries; we must determine the accuracy without first knowing the value
of π2/6.

For this we use geometry. The term 1/n2 is the length of the line
segment drawn vertically from n on the x-axis to the curve y = 1/x2

as indicated in Figure 1.

1/361/251/161/9
1/4

1

2y=1/x

2 4 5 6 7 8 91 3

Figure 1

2 3 4 5 6 7 8 91

1

1/4

1/9
1/16 1/25 1/36

Figure 2

We use each of these line segments as the right edge of a rectangle
of width 1 as in Figure 2.
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According to formula (1), the sum of the areas of all of the rect-
angles is π2/6. The approximation (2) is the sum of the areas of the
first 4 rectangles. Thus, π2/6 − s4 is the sum of the areas of the
rectangles over the interval [4,∞). (See Figure 3.)
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2 3 4 5 6 7 8 91

1

Graph not drawn to scale!

          area=s                                       area=S-s 

area=S

4 4

Figure 3

Since y = 1/x2 decreases on x > 0, each rectangle lies entirely
under the graph. Hence

(4)

π2

6
− s4 <

∫ ∞

4

1

x2
dx

= −1

x

∣

∣

∞

4
=

1

4
= .25

Thus, we can guarantee that our approximation (2) is accurate
within within ±.25

For n terms,

(5)
0 <

π2

6
− sn <

∫ ∞

n

1

x2
dx

= −1

x

∣

∣

∞

n
=

1

n
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Thus, for n terms, the error is at most 1/n. Thus the approxima-
tion (3) is accurate to within ±1/100. Indeed, our calculator tells us
that

π2/6 ≈ 1.644934068

which is within ±10−2 of (3).
To guarantee 10−8 accuracy, we need 108 terms. Even for a com-

puter, computing this many terms is out of the question. This tells
us that this series is not practical for computing π to high degrees of
accuracy.

As mentioned previously, there are other formulas for π. One that
you will analyze in the exercises is

(6)
π4

90
= 1 +

1

24
+

1

34
+ · · · + 1

n4
+ . . .

This series converges considerably more rapidly than the preced-
ing series because 1/n4 tends to zero much faster than 1/n2.

In general, if an is any sequence, we define the sequence of

partial sums sn by

sn = a1 + · · · + an =
n

∑

1

ak

We then define the infinite sum of the an by

(7)
∞

∑

1

ak = lim
n→∞

sn = s

provided this limit exists. When analyzing a summation
∑

ak, when
we refer to “sn” and “s” we mean the above defined expressions.

More generally, in the summation
∞

∑

no

ak

we define

sn =
n

∑

no

ak

∞
∑

no

ak = lim
n→∞

sn.
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Thus the “n” in sn denotes the final index of summation, not the
number of terms being summed. Hence, for example, in the summa-
tion

∞
∑

n=0

2n

we have
s3 = 20 + 21 + 22 + 23.

Remark: When we refer to “
∑∞

1 an”, we are referring to sn, not an.
Thus, for example the sequence

n + 1

n
converges since its limit is 1. However, the series

∞
∑

1

n + 1

n

diverges since

sn =
1 + 1

1
+

2 + 1

2
+

3 + 1

3
+ · · · + n + 1

n
> 1 + 1 + 1 + · · · + 1 = n

which goes to ∞. This example demonstrates a general principle:

Proposition 1. If limn→∞ an 6= 0, then
∑∞

1 an cannot converge.

Proof We note that
sn+1 − sn = an+1.

If follows from Exercise 36 in Chapter 4 that

lim
n→∞

an = lim
n→∞

an+1

= lim
n→∞

sn+1 − lim
n→∞

sn

= s − s = 0

proving our proposition.

The method we used to analyze the series (1) was based on the
following facts:

(1) an ≥ 0
(2) There is a decreasing function f(x) such that an = f(n).
(3) s =

∑∞

1 an exists.
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In this case, the same geometrical argument shows:

Theorem 1. Suppose f , an and s are as described in (a)-(c)
above. Then

s − sn ≤
∫ ∞

n

f(x) dx

It is important that in Theorem 1, f be decreasing to guarantee
that the rectangles all lie below the graph of f .

In the preceding example, the convergence of series (1) was given.
We can prove the convergence using the Bounded Increasing Property.

Example 1. Prove the convergence of the series (1).

Solution: We note that

sn+1 = 1 +
1

22
+

1

32
+ · · · + 1

n2
+

1

(n + 1)2

= sn +
1

(n + 1)2

It follows that sn+1 > sn so the sn form an increasing sequence.
From the Bounded Increasing Property, either limn→∞ sn = ∞ or
limn→∞ sn exists. We will prove that the limit is not ∞ by showing
that sn < 2 for all n.

First Attempt: From Figure 3,

sn <

∫ n

0

1

x2
dx

= −1

x

∣

∣

n

0
= − 1

n
+

1

0

But 1/0 is nonsense. The problem is that in Figure 3, the area of
the region above the first rectangle and below the graph is infinite.
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Second Attempt: To avoid the problem with the first rectangle, we
begin our sum with n = 2, Then, from Figure 3,

1

22
+

1

32
+ · · · + 1

n2
<

∫ n

1

1

x2
dx

<

∫ ∞

1

1

x2
dx = −1

x

∣

∣

∞

1
= 1

Hence

sn = 1 + (
1

22
+

1

32
+ · · · + 1

n2
) < 1 + 1 = 2

as claimed, proving convergence.

In this section we only consider “positive term series”, meaning
that an > 0 for all n. Such series are special because then sn is an
increasing sequence. Specifically

sn+1 = sn + an+1 > sn

since an+1 > 0. It follows that if a positive term series does not
sum to ∞, it must converge. The student should be aware that non-
positive term series have many other ways of diverging. (See Exercise
1 below.)

The following theorem generalizes the computation done in Ex-
ample 1. The proof is just a repeat of the explanation of Example 1
and will be omitted.

Theorem 2. Suppose an > 0 for all n and f(x) is an integrable,
decreasing function on [0,∞) such that an = f(n) for all n ∈ N.
Then s =

∑∞

1 an exists if there is a k such that
∫ ∞

k

f(x) dx < ∞

An important consequence is the following theorem, which is left
as an exercise.

Theorem 3. The following series converges for all p > 1.

(8)
∞

∑

1

1

np

Here is another example of using integrals to prove convergence
and approximate the sum.
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Example 2. Prove that the following series converges. Compute
s to ±.001

(9) s =
∞

∑

1

1

n2 + 1

Solution: We interpret s as the sum of the areas of rectangles under
the graph of f(x) = 1/(x2 + 1) as shown in Figure 4.

2 3 4 5 6 7 8 91

1/2
1/5

1/10 1/17 1/26

y=1/(x  +1)2

Figure 4

To apply Theorem 2, we need to know that f(x) is a decreasing
function. In this case this is true since y = 1 + x2 gets larger as x
grows, which implies that 1/(1 + x2) gets smaller as x grows.

Comparing areas, we see that

sn ≤
∫ ∞

0

1

x2 + 1
dx = arctan x

∣

∣

∞

0
=

π

2

since limx→∞ arctan x = π
2
. It follows that limn→∞ sn 6= ∞, proving

that the limit exists.
To determine how many terms of the series are required to ap-

proximate s to within ±.001 we use Theorem 1:

s − sn ≤
∫ ∞

n

1

x2 + 1
dx = arctan x

∣

∣

∞

n
=

π

2
− arctan n
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Hence, we want
π

2
− arctan n < .001

π

2
− .001 < arctan n

tan(
π

2
− .001) < n

999.999 < n

(Note that applying the tangent function to the inequality is justified
since both it and the arctangent function are increasing.) Hence 1000
terms suffice. We compute (using a computer) that

s ≈ 1

12 + 1
+

1

22 + 1
+ · · · + 1

(1000)2 + 1
= 1.074

Hence, s = 1.074 ± .001.

In general, the rate at which the terms tend to zero determines
how fast the series converges. In fact, it is possible for the sum to
diverge if the terms go to 0 too slowly, as the next example shows.

Example 3. Prove that

(10) 1 +
1

2
+

1

3
+

1

4
+ · · · + 1

n
+ · · · = ∞

Solution: Let us compute a few of the partial sums

s1 = 1

s2 = 1 +
1

2
= 1.5

s3 = 1 +
1

2
+

1

3
= 1.888 . . .

s4 = 1 +
1

2
+

1

3
+

1

4
= 2.083333333

Thus, if the limit of sn exists, it is greater than 2.
In fact, experimental evidence suggests that we can make the sum

as large as desired by summing sufficiently many terms. For example

s11 = 1 +
1

2
+

1

3
+ · · · + 1

11
≈ 3.019877345 > 3

s35 = 1 +
1

2
+

1

3
+ · · · + 1

35
≈ 4.146781419 > 4
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Thus, we guess that the sum in (10) just keeps getting larger
and larger. To prove this, we interpret 1/n as the length of a line
segment drawn vertically from n on the x-axis to the curve y = 1/x,
producing a figure similar to Figure 1. Now, however, we interpret
this line segment as the left edge of rectangle of width 1. These
rectangles now lie over the curve as in Figure 5. Then sn is a sum of
areas of the first n rectangles. Comparison of areas shows that

(11) 1 +
1

2
+ · · · + 1

n
>

∫ n+1

1

1

x
dx = ln(n + 1)

2 3 4 5 6 7 8 91

1

Graph not drawn to scale!

1

1/41/3

1/2

R is the region formed by all of the rectangles

The n th rectangle has height 1/n

y=1/x

area=S

Figure 5

It follows that sn may be made larger than any given number M .
Specifically, sn > M will hold if ln(n + 1) > M which is equivalent
with

n + 1 > eM

We see, therefore, that the sum (10) tends to ∞, despite the fact
that the terms being summed tend to zero. Intuitively, this says that
a lot of very little things can still total to something big.
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The reader should note that in Example 1, the number of terms
necessary for sn to rise above 1000 is astronomically large. This series
tends to ∞ at a very slow rate.

The method we used to analyze Example 1 also applies general
series:

Theorem 4. Suppose f , an and s are as described in (a)-(c)
above Theorem 1. Then

sn ≥
∫ n+1

1

f(x) dx

Using the proceeding theorem, we can prove that the series in

Theorem 3 diverges if p ≤ 1. Hence, for this type series, p = 1 is
the line between divergence and convergence.

Theorems 1, 2, and 4 are, together, referred to as the ”integral test
for convergence.” In practice, use of the integral test is complicated
by the facts that (i) proving that the function f(x) is decreasing can
be difficult and (ii) explicitly evaluation the integral of f(x) might be
impossible. Fortunately, there are other techniques.

Example 4. Determine whether or not the following sum con-
verges and prove your answer.

(12) s =
∞

∑

1

n

n3 + n ln n + 5

Solution: The fastest growing term in the denominator is n3. Hence,
the sum should behave like

∑∞

1 1/n2 which converges from Theo-
rem 3. In fact, from the discussion at the beginning of this section,
it converges to π2/6.

To prove our answer, we note that

n

n3 + n ln n + 5
<

n

n3
=

1

n2

Hence
1

13 + 1 ln 1 + 5
+

2

23 + 2 ln 2 + 5
+ · · · + n

n3 + n ln n + 5

<
1

12
+

1

22
+ · · · + 1

n2
<

π2

6
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Since sn < π2/6, limn→∞ sn 6= ∞, proving convergence.

Remark: In the above example, we did not really need to know the
actual value of

∑∞

1 1/n2. All we required was that it not be infinity.
The work done in Example 4 illustrates the comparison test for

convergence:

Theorem 5. Suppose that 0 ≤ an ≤ bn for all n. Then
∑∞

1 an

will converge if
∑∞

1 bn converges.

As stressed above, it is important to know how many terms we
must sum to obtain a given accuracy of approximation. When us-
ing the comparison test, the rule for determining this information is
simple:

Theorem 6. Suppose that in Theorem 5, the sum of the first N
bn approximates

∑∞

1 bn to within ±ǫ. Then the same will be true for
an: i.e. the sum of the first N an will approximate

∑∞

1 an to within
±ǫ.

Thus, in Example 4 we proved convergence by comparison with
∑∞

1 1/n2. We saw using formula (5) that summing 100 terms of
this series approximates π2/6 to within ±.001. Hence, the sum of
the first 100 terms of the series in Example 4 will approximate s to
within ±.001. Thus

s =
1

13 + 1 ln 1 + 5
+

2

23 + 2 ln 2 + 5
+ . . .

+
100

1003 + 100 ln(100) + 5
= .647 ± .001

Proof (of Theorem 6)
Looking, for example, at Figure 2, we see that the error in ap-

proximating s by sk is

s − sk = ak+1 + ak+2 + . . .

Similarly, letting the nth partial sum of the bn be tn and t =
∑∞

1 bn,
we see that

t − tk = bk+1 + bk+2 + . . .

From an < bn we see that

s − sk < t − tk
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Hence, t − tk < ǫ implies that s − sk < ǫ which proves Theorem 6.

It is also possible to use the comparison test to prove that a series
diverges.

Example 5. Does the following sum converge?

s =
n

∑

1

1/
√

n

Solution: We note that for all natural numbers n, 1/
√

n ≥ 1/n.
Hence

1 +
1√
2

+ · · · + 1√
n

> 1 +
1

2
+ · · · + 1

n
From the work done in Example 2, this latter quantity tend to ∞ as
n tends to infinity. Thus, the sum in this example diverges.

Thus, in Theorem 5, if
∑

an diverges, then
∑

bn will also diverge.
Occasionally, one can find a formula for sn. In the exercises, you

will prove the following:

(13) (1 − x)(1 + x + x2 + · · · + xn) = 1 − xn+1

which, for x 6= 1, yields

(14) 1 + x + x2 + · · · + xn =
1 − xn+1

1 − x

Example 6. The following sum diverges to ∞. What is the first
value of n such that sn > 1010?

s = 1 + 2 + 22 + · · · + 2n + . . .

Solution: From formula (14), with x = 2, we see

(15) 1 + 2 + 4 + · · · + 2n = 2n+1 − 1

Hence, we can find the desired n by the following sequence of
inequalities:

2n+1 − 1 > 1010

(n + 1) ln 2 > ln(1010 + 1)

n + 1 >
ln(1010 − 1)

ln 2
≈ 33.22
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Hence the first n such that sn > 1010 is n = 33.

The next example uses formula (14) in a convergent series.

Example 7. Find the value of the following sum and prove (using
ǫ) that your answer is correct.

s = 1 +
1

3
+

1

32
+ · · · + 1

3n
+ . . .

Solution: From formula (14) with x = 1
3

we see that

sn = 1 +
1

3
+

(

1

3

)2

+ · · · +
(

1

3

)n

=
1 −

(

1
3

)n+1

1 − 1/3

=
3

2
− 3

2

(

1

3n+1

)

Thus the limit is 3/2 = 1.5.
If we want to approximate the limit to within ±ǫ, we need

|
[

3

2
− 3

2

(

1

3n+1

)]

− 3

2
| < ǫ

3

2

(

1

3n+1

)

< ǫ

which will be true if

n > − ln ǫ

ln 3
− 1

Since an appropriate N exists for all ǫ > 0, the limit is proved.

Examples 6 and 7 demonstrate a general theorem.

Theorem 7. Let x be a real number. Then the series on the
right side of the following equality converges if, and only if, |x| < 1.
Furthermore, when it converges, it converges to the stated value.

(16)
1

1 − x
= 1 + x + x2 + · · · + xn + . . .

Theorem 7 gives us another class of series to compare with: those
of exponential growth or decay.
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Example 8. Determine the convergence or divergence of the fol-
lowing series and prove your answer.

s =
∞

∑

1

n2

4n

Solution: We think that 4n grows so much faster than n2 that the
series should converge. Specifically, there is an N such that

(17) n2 < 3n for all n > N .

In fact, the preceding inequality is equivalent with

2 ln n < n ln 3

which, from Proposition 2 in Chapter 3, with a = (ln 3)/2, is valid
for n > 4/a2 = 13.2. Hence, for n > 13,

n2

4n
<

3n

4n
=

(

3

4

)n

Hence, for n > 13, using Theorem 7,

sn = s13 +
142

414
+

152

415
+ · · · + n2

4n

< s13 +

(

3

4

)14

+

(

3

4

)15

+ · · · +
(

3

4

)n

< s13 +
∞

∑

0

(

3

4

)n

= s13 +
1

1 − 3
4

= s13 + 4

It follows that sn is an increasing sequence which cannot tend to
infinity; hence converges.

Remark: We didn’t really need to find an N for which (17) holds;
all we needed was the existence of such an N . Our argument would
have been the same, except that we would have used “N” in every
place that “13” occured. In fact, for any N ∈ N and any sequence
an, we can write

∞
∑

1

an =
N

∑

1

an +
∞

∑

N

an
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The issue of convergence doesn’t arrise for the middle sum since it is
finite. Hence the sum on the left converges if and only if that

on the right does. We use these ideas in the next few examples.

Example 9. Determine the convergence or divergence of the fol-
lowing series.

s =
∞

∑

1

1

(ln n)2

Solution: Since ln n grows more slowly than any power of n there is
a N such that ln n <

√
n for n > N . Hence

∞
∑

1

1

(ln n)2
= sN +

∞
∑

N+1

1

(ln n)2

> sN +
∞

∑

N+1

1

n

This latter sum tends to ∞ from Example 3 so our original sum
diverges.

Example 10. Determine the convergence or divergence of the
following series.

∞
∑

1

ln n

n3 − n + 2

Solution: Our thinking is that the fastest growing term in the de-
nominator is n3 while the numerator grows more slowly than n. Since
n/n3 = 1/n2 which has a finite sum, the series should converge. For
the proof, we note that there are positive constants C and N such
that

Cn3 < n3 − n + 2 for n > N

Hence
ln n

n3 − n + 2
<

ln n

Cn3

<
n

Cn3
=

1

Cn2
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Hence,
∞

∑

N+1

ln n

n3 − n + 2
<

∞
∑

N+1

1

Cn2
=

1

C

∞
∑

N+1

1

n2

which converges from Theorem 3.

Example 11. Determine the convergence or divergence of the
following series.

∞
∑

1

5n

4n + n2 + 1

Solution: Our thinking is that the fastest growing term in the de-
nominator is 4n. Hence, the terms being summed grow like

5n

4n
=

(

5

4

)n

which tends to ∞. Thus, the terms being summed don’t even tend to
zero, making convergence impossible. For the proof, since exponential
growth is faster than power growth, there is an N such that for n > N

n2 + 1 < 4n

Hence for n > N ,

5n

4n + n2 + 1
>

5n

4n + 4n
=

1

2

(

5

4

)n

which tends to ∞, proving divergence.

Exercises

(1) For the following series compute sn for n = 1, 2, . . . , 5. Do
the series seem to be converging? What theorem from this
section of the notes does this exercise illustrate?

(a)
1

2
+

2

3
+

3

4
· · · + n

n + 1
+ . . .

(b) − 1 + 1 + (−1) + · · · + (−1)n + . . .

(c)
1

2
+

−2

3
+

3

4
· · · + (−1)n+1n

n + 1
+ . . .
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(2) How many terms of the series (6) on page 100 does it take to
approximate π4/90 to ±10−2? Compute this approximation
and compare with the answer your calculator gives for π4/90.
Hint: Repeat the argument done for π2/6 on page 97.

(3) Determine the convergence or divergence of the following
series. Prove your answers.
(a)

∑∞

1
1√
1+n

(b)
∑∞

1
1√

1+n2

(c)
∑∞

1
1√

1+n3

(d)
∑∞

1
n√

1+n3

(e)
∑∞

1
n2

√
1+n2

(f)
∑∞

1
2
√

n
3n2+1

(g)
∑∞

1
n11+3n5+7√

n25+1

(h)
∑∞

1
1

n
√

3n−1

(i)
∑∞

1
ln n
n

(j)
∑∞

1
n2+n+5

n4−ln n+1

(k)
∑∞

1
n
2n

(l)
∑∞

1 ne−n

(m)
∑∞

1 ne−n2

(n)
∑∞

1
ln n
n2n

(o)
∑∞

1
1+cos n

n2

(p)
∑∞

1
32n

n!

(4) For each of the infinite sums
∑

an from the preceding exer-
cise, find all x > 0 for which

∑

anx
n converges. We solve

(a) as an example:

Solution: (To (a))

∞
∑

1

nxn

2n
=

∞
∑

1

n
(x

2

)n

If x
2

> 1 then
(

x
2

)n
exhibits exponential growth in n. Thus,

the sum cannot converge since the terms don’t tend to 0.
If 0 < x

2
< 1, then

(

2
x

)n
exhibits exponential growth in

n. Hence, there is an N such that for all n > N
(

2

x

)n

> n3



7. POSITIVE TERM SERIES 115

Thus, for n > N ,

n
(x

2

)n

<
n

n3
=

1

n2

Hence, the infinite sum converges. The sum clearly diverges
for x = 2, so the set of positive x for which the sum converges
is exactly (0, 2).

(5) Assume that it is given that y = f(x) is decreasing on [3,∞).
(See Figure 5 below for a possible graph of f .). Let an = f(n)
and s =

∑∞

1 an.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5

(a) Find a specific value of n and m such that the following
inequality is guaranteed to hold. Choose n as small
as possible and m as large as possible, consistent with
the information provided. Justify your answer with a
diagram.

s − sn <

∫ ∞

m

f(x) dx

(b) Find a specific value of n and m such that the following
inequality is guaranteed to hold. Choose m as small
as possible and n as large as possible, consistent with
the information provided. Justify your answer with a
diagram.

∫ ∞

m

f(x) dx < an + an+1 + . . .
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(c) Find a specific value of n and m such that the following
inequality is guaranteed to hold. Choose n as small
as possible and m as large as possible, consistent with
the information provided. Justify your answer with a
diagram.

∫ ∞

m

f(x) dx < s − sn

(6) Assume that it is given that y = f(x) is is increasing on
[0, 2.5] decreasing on [2.5,∞). (See Figure 5 above for a
possible graph of f .) Let an = f(n) and s =

∑∞

1 an.
(a) Find a specific value of n, a and b such that the following

inequality is guaranteed to hold. Choose both n and b
as large as possible and a as small as possible, consistent
with the information provided. Justify your answer with
a diagram.

a1 + a2 + · · · + an >

∫ b

a

f(x) dx

(b) Find a specific value of n, a and b such that the following
inequality is guaranteed to hold. Choose both n and a
as large as possible and b as small as possible, consistent
with the information provided. Justify your answer with
a diagram.

a1 + a2 + · · · + an <

∫ b

a

f(x) dx

(7) Assume that it is given that y = f(x) is increasing on [0, 5]
and decreasing on [5,∞). (See Figure 6 below for a possible
graph of f .) Let an = f(n) and s =

∑∞

1 an.
(a) Find a specific value of n, a and b such that the following

inequality is guaranteed to hold. Choose both n and a
as large as possible and b as small as possible, consistent
with the information provided. Justify your answer with
a diagram.

a1 + a2 + · · · + an <

∫ b

a

f(x) dx
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Figure 6

(b) Find a specific value of n and a such that the following
inequality is guaranteed to hold. Choose a and n as
small as possible, consistent with the information pro-
vided. Justify your answer with a diagram.

s − sn <

∫ ∞

a

f(x) dx

(8) Let

s =
∞

∑

1

3n2

2n + 1

(a) Find values of k and m such that the following inequality
is satisfied. Justify with a diagram. Choose k and m as
small as possible, consistent with your diagram.

∫ ∞

k

3x2

2x + 1
dx > am + am+1 + . . .

(b) Let k and m be as in part (a) and let n ≥ k. Find p (de-
pending on n) such that the following inequality holds.
Choose p as large as is consistent with the diagram in
(a). Justify your answer in terms of your diagram.

∫ p

k

3x2

2x + 1
dx > am + am+1 + · · · + an
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(9) Which of the following series converge and which diverge? If
convergent, approximate the sum within ±10−3. If divergent,
determine a value of N so that sn > 100 for all n ≥ N .
(a)

∑∞

2
3n2

(n3+1)4
Reason as in Example (2) on page 104. The-

orem 1 on page 102 is since in this exercise the summand
decreases for n ≥ 2.

(b)
∑∞

1
3n2 cos2 n
(n3+1)4

(c)
∑∞

1
1√

2n+5
Reason as in Example 3

(10) In Exercise 9, part (c), prove using M that limn→∞ sn = ∞.
(11) Let

s =
∞

∑

1

n2 +
√

n + 1

n4 + 3n + 7

(a) Prove that this series converges.
(b) Write a sum which computes s to within ±10−3.

(12) Let

s =
∞

∑

1

n

en2/50

(a) Find a specific value of n and m such that the following

inequality is guaranteed to hold where f(x) = xe−x2/50.
Justify your answer with a diagram. Hint: Use a graph-
ing calculator to graph f(x). You may assume that f(x)
is decreasing where the calculator so indicates.

s − sn <

∫ ∞

m

f(x) dx

(b) Find a specific value of n and m such that the following
inequality is guaranteed to hold. Justify your answer
with a diagram.

∫ ∞

m

f(x) dx < an + an+1 + . . .

(c) Does this series converge? If so prove it and approxi-
mate its limit to within ±10−3. If not find a value of n
for which sn > 1000 for all n ≥ N .

(d) Prove convergence of the following series and determine
how many terms are necessary to approximate its sum
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to within ±10−3. Hint: Use Theorem 7.

s =
∞

∑

1

n

4n2/50 + n + 1

(13) For which p does

∞
∑

2

1

np ln n

converge? Hint: For p 6= 1, consider rates of growth. For
p = 1, use Theorem 4. The integral may be evaluated with
the substitution u = ln x.

(14) Does the following sum converge? If so, compute its value to
within ±10−2. If not, find a value of n such that sn > 1000.

1 +
1

23
+

1

33
+ · · · + 1

n3
+ . . .

(15) Prove the convergence of the following sum and compute its
value to within ±10−2.

∞
∑

1

1

n3 + 3n + 1

(16) Diverge or converge? Prove your answer.

(a)
∞

∑

1

n3 − n2 + ln n + 1

n6 + n5 + ln n +
√

n

(b)
∞

∑

1

(n ln n)(15)n

n!

(17) Prove the convergence of the following sum and compute its
value to within ±10−3.

s =
∞

∑

1

sin2 n

2n

(18) Use Theorem 4 to determine how many terms of the series
from Example 5 are required for the sum to exceed 100.
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(19) Find all values of x for which the following series converges.
Prove your answer using rates of growth.

∞
∑

1

nxn

3n ln n

(20) Let p > 1. Use Theorem 2 to prove Theorem 3. Suppose
that p = 1.001. How many terms will approximate the sum
to within ±10−1?

(21) Let p < 1. Use Theorem 4 to prove divergence of the se-
ries (8). Suppose that p = .99. How many terms will make
the sum larger than 10?

(22) Let p > 1. Use Theorem 2 to prove convergence of the
following series. Suppose that p = 1.001. How many terms
will approximate the sum to within ±10−1?

∞
∑

2

1

n(ln n)p

(23) Use Theorem 4 to prove that the series in Exercise 22 di-
verges for p < 1. How many terms will make the sum larger
than 10?

(24) The following exercise outlines a different proof of the diver-
gence of

∞
∑

1

1

n

For the proof, let sn = 1 + 1
2

+ 1
3

+ · · · + 1
n
.

(a) Explain why s4 > 1 + 1
2

+ 1
4

+ 1
4

= 1 + 1
2

+ 2
4
.

(b) Explain why s8 > 1 + 1
2

+ 2
4

+ 4
8
.

(c) From similar lines of reasoning, how big will s16 be?
(d) Find a value of n such that sn > 1000.
(e) Prove that limn→∞ sn = ∞.

(25) For the following series
(a) Compute s1, s2, s3 and s20. Hint: Use formula (14).
(b) Find a value of n such that 3 − sn < 10−100.
(c) Prove, using ǫ, that limn→∞ sn = 3.

s =
∞

∑

0

(

2

3

)n

.

(26) For the following series
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(a) Compute s1, s2, s3 and s20. Hint: Use formula (14).
(b) Find a value of n such that sn > 10100.
(c) Prove, using M , that limn→∞ sn = ∞.

s =
∞

∑

0

(

3

2

)n

.

(27) Here is a proof of formula (14) for the n = 2 case:

(1 − x)(1 + x + x2) = (1 − x)(1 + x) + (1 − x)x2

= (1 − x2) + (x2 − x3) = 1 − x3

Next we use the n = 2 case to do n = 3:

(1 − x)(1 + x + x2 + x3) = (1 − x)(1 + x + x2) + (1 − x)x3

= (1 − x3) + (x3 − x4) = 1 − x4

Next we use the n = 3 case to do n = 4:

(1 − x)(1 + x + x2 + x3 + x4) = (1 − x)(1 + x + x2 + x3) + (1 − x)x4

= (1 − x4) + (x4 − x5) = 1 − x5

(a) Use a similar argument to do the n = 5 and n = 6 cases.
(b) Use mathematical induction to prove the formula in gen-

eral.
(28) Let

sn =
1

1 · 3 +
1

3 · 5 +
1

5 · 7 + · · · + 1

(2n − 1) · (2n + 1)
.

(a) Use mathematical induction to prove that sn = n
2n+1

.
(b) Compute

∞
∑

1

1

(2n − 1)(2n + 1)

(29) Let

an = 1 +
1

2
+

1

3
+ · · · + 1

n
− ln n

(a) Show that a1 = 1, a2 ≈ .8069, and a3 ≈ .7347. Compute
a4, a5 and a6. You should find that the values appear
to steadily decrease.
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(b) Prove that

1

n + 1
< ln(n + 1) − ln n

Hint: Use a single rectangle below the curve to bound
∫ n+1

n

1

x
dx

(c) Show that that for all n,

an+1 − an =
1

n + 1
− (ln(n + 1) − ln n)

Note that it now follows from (b) that an+1 − an < 0;
hence the an decrease.

(d) Use formula (11) to prove that an > 0.
It now follows from the Bounded Decreasing Property

that γ = limn→∞ an exists and is less than .69. Hence, for
large n

1 +
1

2
+

1

3
+ · · · + 1

n
≈ ln n + γ


