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CHAPTER 8

Absolute convergence

The reader should note that all of the techniques demonstrated
so far are based on the Bounded Increasing Theorem, which requires
that the an be non-negative.

Any series with positive and negative terms can be written as the
difference of two positive term series. For example,

(1)

1

12
− 1

22
+

1

32
− 1

42
+ . . .

=
1

12
+

1

32
+

1

52
+ . . .

−
(

1

22
+

1

42
+

1

62
+ . . .

)

Both of the positive series in the last equality converge since each is
less than

π2

6
=

1

12
+

1

22
+

1

32
+ · · · + 1

n2
+ . . .

The convergence of (1) follows.
Notice that the preceding series is just the series on the left of the

equality in (1) with all minus signs changed to pluses. The argument
just done generalizes to prove the following theorem.

Theorem 1. Let an be a sequence of real numbers. Then
∑∞

1
an

will converge if
∑∞

1
|an| converges.

Proof Let tn be the sum of the non-negative ai for i ranging from 1
to n and let un be the sum of the negative ai for i in the same range.
Then

sn = tn + un

Note that tn is increasing since it is a sum of non-negative terms. For
similar reasons, −un is increasing. (Note that if ai < 0, −ai > 0.)
Furthermore, both tn and −un are less than

|a1| + |a2| + · · · + |an| + . . .
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124 8. ABSOLUTE CONVERGENCE

which is (by hypothesis) finite. It follows from the bounded increasing
theorem that both tn and −un converge. Thus sn = tn − (−un)
converges, proving the theorem.

Theorem 1 allows us to apply the notion of rates of convergence
to non-positive series.

Example 1. Does the following series converge?.

1

13 − 3
−

√
2

23 − 3
+

√
3

33 − 3
+ · · · + (−1)n+1

√
n

n3 − 3
+ . . .

Solution: Replacing each term by its absolute value yields the series

1

2
+

√
2

23 − 3
+

√
3

33 − 3
+ · · · +

√
n

n3 − 3
+ . . .

Our thinking is that for large values of n,
√

n

n3 − 3
≈

√
n

n3
=

1

n2.5

indicating convergence.
More precisely, there is are positive values of C and N such that

Cn3 < n3 − 3

for all n > N . Hence, for such n
√

n

n3 − 3
<

√
n

Cn3
=

1

Cn2.5

whose sum converges from Theorem 3 in Chapter 6, proving the con-
vergence.

The rate at which the an tends to 0 is not, however, the whole
story. Consider, for example,

(2) s =
∞

∑

1

(−1)n+1

n

On the basis of rates of growth one might expect this series to di-
verge since the an grow like 1/n which has infinite sum. Remarkably,
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however, the sum actually converges. To see why, we compute a few
values of sn

s1 = 1

s2 = 1 − 1

2
= .5

s3 = 1 − 1

2
+

1

3
= .833

s4 = 1 − 1

2
+

1

3
− 1

4
= .583

s5 = 1 − 1

2
+

1

3
− 1

4
+

1

5
= .783

s6 = 1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
= .617

We make the following observations:

(1) The values follow a high-lower-higher pattern. Specifically,
s1 > s2 < s3, s3 > s4 < s5 i.e. each odd numbered

sum is greater than the next even numbered sum

and each even numbered sum is less than the next

odd numbered sum.

(2) s1 > s3 > s5 while s2 < s4 < s6 i.e. the odd numbered

sums decrease and the even numbered sums increase.

In Exercise 7, you will prove that these observations are indeed
true for all n. Granted them, we may prove the convergence as fol-
lows:

Since the even sums increase, either they have a limit or they tend
to ∞. They cannot tend to ∞ since for n even

sn < sn−1 < s1

since the odd numbered sums decrease. Hence they converge.
Similarly, the odd term must either have a limit or must tend to

−∞. They cannot tend to −∞ since, for n odd,

sn > sn+1 > s2

Let
E = lim

n→∞
s2n

O = lim
n→∞

s2n+1

be the limits of the even and odd terms.
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Since

s2n+1 = s2n +
1

2n + 1
we see

O − E = lim
n→∞

(s2n+1 − s2n) = lim
n→∞

1

2n + 1
= 0

showing that E = O.
It now follows from Exercise 9 that s = limn→∞ sn exists and

equals both E and O, showing convergence.

Remark: Since the odds decrease and the evens increase, we see
that for n odd

sn ≥ s ≥ sn+1

Letting n = 5 we find, for example,.617 < s < .783. In general, since
s lies between sn and sn+1,

|s − sn| < |sn+1 − sn| =
1

n + 1

Thus, for sn to approximate s to within ±10−2, we require 1/(n+1) <
10−2 which corresponds to 100 terms. Approximating s to within
±10−8 would require 100,000,000 terms! It turns out that the exact
value of the sum is ln 2.

The argument used to analyze the series (2) generalizes to prove
the following theorem, which is left as an exercise.

Theorem 2. Suppose that an is a positive, decreasing sequence
where limn→∞ an = 0. Then

s =
∞

∑

1

(−1)nan

converges. Furthermore

|s − sn| < an+1

The series in Example 1 converges for relatively simple reasons:
an tends to 0 fast enough for

∞
∑

1

|an|
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to be finite. Such series are said to be absolutely convergent.
The series (2) is not absolutely convergent since

∞
∑

1

|an| =
∞

∑

1

1

n
= ∞

Its convergence is due to the cancellation of the pluses and minuses in
the summation. A convergent series which is not absolutely conver-
gent is said to be conditionally convergent. Conditional conver-
gence is a particularly unpleasant form of convergence. For example,
the commutative law fails for conditionally convergent series

as the next example shows.

Example 2. We commented that

1 − 1

2
+

1

3
− 1

4
+ · · · + (−1)n+1

n
+ . . .

sums to a number less than 1. (ln 2 to be precise.) Show how to
rearrange the terms so as to sum to exactly 2.

Solution: Note that neither the odd nor the even numbered an have
finite sum:

1 +
1

3
+

1

7
+ · · · + 1

2n + 1
+ . . . =

∞
∑

1

1

2n + 1
= ∞

−1

2
− 1

4
− 1

6
− · · · − −1

2n
− . . . = −

∞
∑

1

1

2n
= −∞

We begin by summing just enough odd numbered an to make the
sum ≥ 2. We find

1 +
1

3
+

1

7
+ · · · + 1

17
= 2.02 ≥ 2

Next, we subtract the first even numbered an

1 +
1

3
+

1

7
+ · · · + 1

17
− 1

2
= 1.52

which brings us below 2. We knew that this would happen because
our odd sum can be at most 1/17 units above 2 and a2 = 1/2 > 1/17.

Next, we add on just enough additional odd terms to make the
sum ≥ 2:

1 +
1

3
+

1

7
+ · · · + 1

41
− 1

2
= 2.004
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We then subtract a4 which, as before, brings the sum below 2:

1 +
1

3
+

1

7
+ · · · + 1

41

−1

2
− 1

4
= 1.754

We keep going:

1 +
1

3
+

1

7
+ · · · + 1

69

−1

2
− 1

4
= 2.009

and

1 +
1

3
+

1

7
+ · · · + 1

69

−1

2
− 1

4
− 1

6
= 1.842

1 +
1

3
+

1

7
+ · · · + 1

95

−1

2
− 1

4
− 1

6
= 2.0007

and

1 +
1

3
+

1

7
+ · · · + 1

95

−1

2
− 1

4
− 1

6
− 1

8
= 1.8757

In each step of this process, we use many of the odd numbered
an and one of the even. Thus, we eventually use all of the an. At the
nth step the difference between the sum and 2 is at most the value of
the even numbered term that was subtracted. Since these terms tend
to zero, this difference can be made less than any given ǫ, showing
that the limit is indeed 2.

There is nothing special about 2. By rearranging the terms of (2)
we can make the sum converge to and value we wish! There is also
nothing special about series (2) other than that it is only conditionally
convergent: any conditionally convergent series can be arranged to
converge to any desired value!

The alternating series test is often used to answer questions such
as the following:
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Example 3. Find all x for which the following series converges.
For which x is the convergence absolute?

∞
∑

0

xn

2n
√

n

Solution:

|an| =
1√
n

( |x|
2

)n

For |x| > 2,
(

|x|
2

)n

exhibits exponential growth which is so much

faster than the decay of 1/
√

n that this should tend to ∞ making
convergence impossible. In fact, there is a N such that for n > N ,

( |x|
2

)n

> n

showing that for such n, |an| >
√

n, making convergence impossible.
For |x| < 2,

1√
n

( |x|
2

)n

<

( |x|
2

)n

These terms have a finite sum, showing that our original series con-
verges absolutely for |x| < 2.

If |x| = 2 then x = ±2. For x = 2 our series becomes

∞
∑

0

1√
n

which diverges. For x = −2 our series becomes
∞

∑

0

(−1)n

√
n

which converges by the alternating series test. Hence, the series con-
verges for x ∈ [−2, 2).

Exercises

(1) Decide which of the following series (a) converge absolutely
(b) converge conditionally or (c) diverge. This exercise is to
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be done by “inspection.” No proofs or reasons required (for
the moment).

(a)
∞

∑

1

(−1)n ln n

n

(b)
∞

∑

2

(−1)nn

ln n

(c)
∞

∑

1

(−1)nn

n + 1

(d)
∞

∑

1

(−1)nn

n2 + ln n

(e)
∞

∑

1

(−1)nn

n3 + 1

(f)
∞

∑

2

cos n

n2 ln n

(g)
∞

∑

1

(−1)n3n

2n − n5 + 1

(h)
∞

∑

1

(−1)n2n

2n − n5 + 1

(i)
∞

∑

1

(−1)n(1.5)n

2n − n5 + 1

(j)
∞

∑

1

(−1)n(n3 −√
n)

n3 + ln n

(k)
∞

∑

1

(−1)n(n3 −√
n)

n3.001 + ln n

(2) Prove the answers given in Exercise 1.
(3) For each of the series

∑

an in Exercise 1, find all x such that
the series

∑

anx
n converges. For which x is the convergence

absolute? Prove your answers.
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(4) For each of the series
∑∞

1
an in Exercise 3 of Chapter 7, find

all x such that the series
∑∞

1
anxn converges. For which x

is the convergence absolute? Prove your answers.
(5) Create 5 interesting examples (readers choice) of series which

converge only conditionally. Do not use any of the series from
Exercise 1 or from the text.

(6) Create 5 interesting examples (readers choice) of alternat-
ing series which diverge. Do not use any of the series from
exercise 1 or from the text.

(7) For the series (2):
(a) Prove that for n odd, sn < sn+1 Hint: sn+1 = sn+?.
(b) Prove that for n even, sn > sn+1 Hint: sn+1 = sn+?.
(c) Prove that for n odd, sn > sn+2 Hint: sn+2 = sn+?.
(d) Prove that for n even, sn < sn+2 Hint: sn+2 = sn+?.

(8) Suppose that for all n an > 0 and an > an+1. Show that
(a)-(d) from Exercise 7 hold for

∑∞
1

(−1)n+1an.
(9) Let bn be a sequence such that limn→∞ b2n and limn→∞ b2n+1

both exist and are equal. Prove, using ǫ, that limn→∞ bn

exists.
(10) Repeat the discussion from Example 3 to show how to rear-

range the series (2) to sum to 1. Do the first three iterations.
(11) Modify the discussion from Example 3 to show how to rear-

range the series (2) to sum to -2. Do the first three iterations.
Hint: A programmable calculator might help in computing
the sums.

(12) Suppose that
∑∞

0
anx

n converges absolutely. Prove that
∑∞

0
any

n converges absolutely for |y| < |x|.
(13) Suppose that

∑∞
1

an converges, but not necessarily abso-
lutely. Prove that

∑∞
0

anx
n converges absolutely for |x| < 1.

Hint: From ? (you fill in ?) in Chapter 7, limn→∞ an = 0.
Hence, there is an N such that for n > N , |an| < 1. (Why?)

(14) Suppose that
∑∞

0
anx

n converges, but not necessarily abso-
lutely, where x 6= 0. Prove that

∑∞
0

any
n converges abso-

lutely for |y| < |x|. Hint: Apply the preceding exercise with
an replaced by anx

n and x replaced by y/x.

Remark: It follows from this exercise that if
∑∞

0
anx

n

doesn’t converge for all x, then there is a number r (the
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radius of convergence) such that the series converges ab-
solutely for |x| < r and diverges for |x| > r.

(15) Suppose that an is a positive, decreasing sequence such that
∑∞

0
(−1)nan converges conditionally. For which x does

∑

anx
n

converge? For which x does the sum diverge? Explain.
(16) (a) Suppose that there is an N such that for all n > N ,

|an|1/n < 1

2
. Prove that

∑∞
1

an converges absolutely.

(b) Suppose that limn→∞ |an|1/n = 1/4. How does it follow
from (a) that

∑∞
1

an converges absolutely.
(c) Suppose that limn→∞ |an|1/n = c < 1. Prove that

∑∞
1

an

converges absolutely.
(d) Use part (c) to prove that

∞
∑

1

(

n3 + 3

3n3 − 7

)n

converges.
(e) Suppose that limn→∞ |an|1/n = c > 1. Prove that limn→∞ |an| =

∞, showing that
∑∞

1
an cannot converge.

Remark: The theorem proved in (c) and (e) is called the
root test.

(17) (a) Suppose that for all n ≥ 0, |an+1| ≤ 1

2
|an|. Prove that

∑∞
0

an converges absolutely. Hint: Show that for all
n ≥ 0, |an| ≤

(

1

2

)n |a0|.
(b) Suppose that limn→∞

|an+1|
|an|

= 1

4
. Prove that

∑∞
0

an

converges absolutely.

(c) Suppose that limn→∞
|an+1|
|an|

= c < 1. Prove that
∑∞

0
an

converges absolutely.
(d) Suppose that limn→∞ |an|1/n = c > 1. Prove that limn→∞ |an| =

∞, showing that the series cannot converge.

Remark: The theorem proved in (c) and (d) is called the
ratio test.


