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CHAPTER 9

Irrational Numbers

We are familiar with the equality

1

3
= .3333333 . . .

This is really a statement about an infinite series. Explicitly, it states

1

3
=

3

10
+

3

102
+ · · · + 3

10n
+ . . .

=
3

10

(

1 +
1

10
+

1

102
+ · · · + 1

10n−1
+ . . .

)

=
3

10

(

1

1 − 1/10

)

=
1

3

where we used the formula for the sum of the geometric series in the
last equality.

In general, if an is a sequence of digits (i.e. an is a sequence of
integers between 0 and 9) then we define

.a1a2a3 · · · =
∞

∑

1

an

10n

This series converges. In fact, for each n

sn = .a1a2 . . . an < 1

Hence, limn→∞ an exists from the Bounded-Increasing Theorem. Hence
every infinite decimal you can write represents some specific
number. Thus, for example,

a = .101001000100001000001000000100000001000000001000 . . .

represents a real number, where each 1 is followed by one more 0 than
the previous 1.

Conversely, every real number is representable as an infinite dec-
imal:
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Theorem 1. Let x be a positive real number. Then there is a

natural number n and sequence of digits ak such that

x = n.a1a2 . . . ak . . .

Proof There is a non-negative integer n such that

n ≤ x < n + 1.

This n is the integer part of the decimal expansion of x. Next, we
divide the interval [n, n+1] into 10 subintervals, each of length 1/10.
Since x belongs to one of these subintervals, there is an integer 0 ≤
a1 ≤ 9 such that

n.a1 ≤ x < n.a1 +
1

10
Next, by dividing the interval [n.a1, n.a1+ 1

10
] into 10 subintervals,

each of length 1/100, we find that there is an integer a2 between 0
and 9 such that

n.a1a2 ≤ x < n.a1a2 +
1

100
Continuing, we produce a sequence of digits an such that

n.a1a2 . . . an ≤ x < n.a1a2 . . . an +
1

10n

To prove that this sequence converges to x, let ǫ > 0 be given.
Then

0 ≤ x − n.a1a2 . . . an <
1

10n

|x − n.a1a2 . . . an| <
1

10n

This will be less than ǫ provided 10−n < ǫ which is true if n > N
where N = − ln ǫ/ ln 10, proving our theorem.

A constant theme in our studies has been that, as much as pos-
sible, we should only use the axioms or their consequences in our
proofs. The preceding proof used the fact that for every positive real
number x, there is a natural number n such that x < n + 1. This
is a version of what is usually referred to as the Archimedean Prop-
erty. Since it is not one of our axioms, we should either prove it or
assume it as another axiom. Remarkably, it is a consequence of the
Least Upper Bound Axiom. We have, in fact, already used this prop-
erty several times without comment. For example, in our solution to
Example 1 on page 84, we stated at one point “if n > 1

ǫ
− 1, then
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1 − ǫ < n

n+1
showing that 1 − ǫ is not an upper bound for S.” It is

the Archimedean Property that guarantees the existence of such n.
We leave it as an exercise (Exercise 16 on page 150 below) to explain
how this property follows from the GLB axiom.

Theorem 2. For all numbers M there is a non-negative integer

n such that

n ≤ M < n + 1.

A decimal expansion is finite if eventually all of the an are zero.
Thus, 1 = 1.0 and 2.74 are finite. Every non-zero number that has
a finite expansion is also has an infinite expansion. We claim, for
example, that

1.0 = .99999 . . .

In fact,

.9999 . . . =
9

10
+

9

102
+ · · · + 9

10n
+ . . .

=
9

10

(

1 +
1

10
+

1

102
+ · · · + 1

10n−1
+ . . .

)

=
9

10

(

1

1 − 1/10

)

= 1

where we used the formula for the geometric series in the last equality.

Remark: Many students find the equality

(1) 1 = .99999 . . .

confusing. They argue that no matter how many 9’s we write after
the decimal, we will never reach 1. Hence, the best we can say is that

1 ≈ .9999 . . .

This is akin to saying that we should write

1 ≈ lim
n→∞

n

n + 1

instead of
1 = lim

n→∞

n

n + 1
since the values of n/(n+1) never actually equal 1. The explanation
is that the limit refers to the number being approximated and not
to the numbers that are doing the approximating. The preceding
equality means that 1 is the unique number that the fractions n/(n+
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1) approximate as n gets large. Similarly, the equality (1) means that
1 is the unique number that we approximate as we write more and
more 9’s after the decimal.

Dividing both sides of equation (1) by powers of 10 shows that:

.1 = .09999 . . .

.01 = .009999 . . .

and so forth. Hence
2.74 = 2.73 + .01

= 2.73 + .0099999 . . . = 2.7399999 . . .

This example illustrates the following general principle: every number

which has a finite decimal representation will also have an infinite

decimal representation. It is a theorem (which we will not prove)
that the numbers that have finite expansions are the only
ones which can have two expansions. For all other numbers the
numbers an are unique.

In general, when we write a bar over a sequence of digits, we mean
that the sequence repeats forever. For example

2.736 = 2.73636363636 . . . .

We say that such an expansion is a repeating expansion.

Example 1. Express 2.736 as a fraction.

Solution: We note that
2.73636363636 . . . = 2.7 + .03636363636 . . .

= 2.7 +
1

10
.3636363636 . . .

Furthermore,

.36 =
36

100
+

36

1002
+ · · · + 36

100n
+ . . .

=
36

100

(

1 +
1

100
+

1

1002
+ · · · + 1

100n−1
+ . . .

)

=
36

100

1

(99/100)
=

4

11

Hence, our answer is

27

10
+

1

10

4

11
=

301

110
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Recall that a number x is said to be rational if x = p/q where
p and q are integers with q 6= 0. For example 3/7, 4 = 4/1, and
−5/3 are all rational. A number that is not rational is irrational.
Examples include π, e and

√
2.

The general repeating decimal may be converted into a fraction
using the same technique as in the preceding example. The result
will be rational due to the observation that if x is rational, then

1 + x + x2 + · · · + xn + · · · =
1

1 − x

is also rational. Hence every repeating expansion represents
a rational number. Conversely, the expansion of a rational
number must repeat. (The exercises explore why.)

Remark: Students often describe irrational numbers as “those num-
bers whose decimal expansions go on forever.” This is incorrect. The
expansion 2.736363636 . . . “goes on forever” and yet represents the
rational number: 4

11
. The proper statement is that an irrational num-

ber is a number whose decimal expansion does not repeat. It should
be noted that numbers with finite expansions do repeat. For example
2.7 = 2.70.

One very important irrational number is
√

2. Here is a proof of
its irrationality.

Theorem 3. The number
√

2 is irrational.

Proof If
√

2 were rational, then there would be integers p and q such
that

√
2 = p/q. We assume that the fraction p/q is in lowest terms

so that p and q have no common factors.
Note that

2 = (
√

2)2 =
p2

q2

Hence

p2 = 2q2.

This makes p2 even. Hence p must be even, since the square of an
odd number would be odd. Thus p = 2k where k is an integer.
Substituting:

4k2 = 2q2

2k2 = q2.
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Thus, q must be even also. But this contradicts the assumption that
p and q have no common factors, proving our theorem.

Remark: The irrationality of
√

2 was discovered by the early Greek
mathematicians who proved that the length of the hypotenuse of an
isosoles right triangle was an irrational multiple of the side lengths.
This actually precipitated a crisis in Greek mathematics. Much of
Greek mathematics, including the theorems about parallel lines cut-
ting transversals, was based on an assumption (called commensu-
rability) which was equivalent to the statement that only rational
numbers existed. When this was found to be wrong, all of mathe-
matics seemed to be coming apart at the seams. For many Greek
mathematicians, this was more than a loss of a career. It was also a
failure of their religion, since a number of them felt that mathematics
was the medium through which God spoke to them. It is reported
that some even committed suicide! Eventually, the crisis was resolved
by Eudoxus who said, in essence, that between any two real numbers
there is a rational number. With this additional axiom, they were
able to correct the proofs of their theorems.

Once we know one irrational number, we can produce as many as
we want.

Example 2. Prove that x = 2

3
+ 4

5

√
2 is irrational.

Solution: We work by contradiction, showing that assuming that
x is rational leads to nonsense. Specifically, suppose that there are
integers p and q such that

p

q
=

2

3
+

4

5

√
2

We solve the above equality for
√

2:

p

q
− 2

3
=

4

5

√
2

5

4

3p − 2q

3q
=

√
2

15p − 10q

12q
=

√
2
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Since p and q are integers, 15p−10q and 12q are both integers. Thus,√
2 is a ratio of integers, which is nonsense since

√
2 is irrational.

The argument just described generalizes to the following result
which you will prove in the exercises:

Proposition 1. Let Z be an irrational number and let x and y
be rational numbers with x 6= 0. Then xZ + y is irrational.

There are so many irrational numbers that there is an irrational

number between every pair of rational numbers.

Theorem 4. Let x and y be rational numbers with x < y. Then

there is are an infinite number of irrational numbers z satisfying x <
z < y.

Proof Since limn→∞

√
2/n = 0, there is an N such that

√
2

n
< y − x

for all n > N . For such n

x <

√
2

n
+ x < y

From Theorem 1,
√

2

n
+ x is irrational. This proves the theorem.

It is also true that between any two irrational numbers there are
an infinite number of rational numbers.

Theorem 5. Let x and y be irrational numbers with x < y. Then

there is are an infinite number of rational numbers z satisfying x <
z < y.

Proof We may write

y = M + .a1a2a3 . . .

where M is an integer and, of course, .a1a2a3 . . . is a decimal. Then

y = lim
n→∞

(M + .a1a2 . . . an).

Since y > x, there is an N such that for all n > N

M + .a1a2 . . . an > x



140 9. IRRATIONAL NUMBERS

each of the numbers on the left side of the inequality is rational and
lies between x and y, proving our theorem.

There are an infinite number of both irrational and of rational
numbers. However, there is a very real sense in which the set of
irrationals is vastly larger than the set of rationals. Below, we have
begun a list which will eventually include all all rational numbers in
the interval (0, 1):

1

2

1

3

2

3

1

4

3

4

1

5

2

5

3

5

4

5

1

6

5

6
. . .

The pattern here is that we list fractions by increasing value of the
denominator. For a given value of denominator, we go from smallest
to largest, omitting fractions which are not in reduced form. Let us
think of the elements of this sequence as being expressed as decimals
where we use the finite expansion whenever we have a choice:

(2)

a1 =.33333333 . . .

a2 =.66666666 . . .

a3 =.50000000 . . .

a4 =.75000000 . . .

a5 =.20000000 . . .

. . .

On the other hand, listing the irrational numbers in (0, 1) is, we
claim, quite impossible. To see this, let us imagine that we have
somehow managed to list all irrationals in this interval. Our list
might look something like:

b1 =.31415027 . . .

b2 =.14936815 . . .

b3 =.22719664 . . .

b4 =.97652234 . . .

b5 =.62718891 . . .

...

We imagine the decimal expansions extending out to infinity and the
list extending down the page to infinity. We claim that no matter
what the specific numbers in the list, there will always be some ir-
rational number r which is not in the list. To see this, look at the
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first digit of the first number in the list. In our case, it is a three.
We choose some number between 0 and 9, other than 3, and make it
be the first digit of r. Lets choose 4, so r = .4+. This insures that
r 6= b1. Next, we look at the second digit of the second number on
the list: 4. We change it, declaring, say, r = .47+. This guarantees
that r is also not equal to b2. We continue this way, at each step
choosing the nth digit of r to be some some number between 0 and
9 which differs from the nth digit of bn. For the list above, r might
look like r = .47647+. It is clear that in this manner we produce a
number r which appears nowhere on our list.

We also must be careful that the number r we produce is not
rational, since we claimed that there is an irrational number not on
the list. For this, all we need do is to guarantee that r does not appear
on the list of rationals on page 140. This is easily accomplished; we
simply select the nth digit of r so that it also differs from the nth

digit of an. We also want to avoid selecting a 9. This is to avoid
the problem of non-uniqueness of representation of rational numbers.
Specifically, the number .27999 . . . appears on the list of rationals as
2.28. If we were to choose r = .279999 . . . , then r appears on the list
of rational numbers, even though its expansion is different from all
of the listed expansions. Once this is done, r appears on neither list;
hence our list has excluded at least one irrational. In fact, by making
different selections of the digits, we prove that our list excludes an
infinite number of irrationals.

Sets of numbers which may be listed are called countable. Those
which cannot are called uncountable. There is a very close relation-
ship between these notions and the notion of counting. Consider, for
example, what happens if you ask a kindergartner how many objects
there are in the set S = {+, ∗,×}. She might first hold up one finger,
then another and finally a third. She would then say ‘T’ree’. What
she has done is set up a correspondence between the elements of the
set S and the first three fingers on her hand:

First Finger → +

Second Finger → ∗
Third Finger → ×

Her correspondence is one-to-one; each finger corresponds to a dif-
ferent symbol. Her correspondence is ‘onto’; she hasn’t left out any



142 9. IRRATIONAL NUMBERS

symbols. For her, a set has three objects if she can find correspon-
dence between the first three fingers on her hand and the objects of
the set which is both one-to-one and onto.

When we listed the rational numbers in the interval (0, 1), we set
up a correspondence between the natural numbers and the rationals:

1 → 1

2

2 → 1

3

3 → 2

3

4 → 1

4

5 → 3

4

6 → 1

5

7 → 2

5

8 → 3

5
. . .

It is as if we had a hand with an infinite number of fingers (one
for each natural number) and we were using our infinite number of
fingers to count the rationals in (0, 1). Notice that each of our ‘fingers’
corresponds to a different rational number. (This is why we omitted
non-reduced fractions from our list.) Thus our correspondence is one-
to-one. Each rational in the interval eventually gets counted. Thus
our correspondence is onto. In the case of the real numbers, our
infinite number of fingers was not enough to get the job done. No
matter how we try, we always have uncounted real numbers. It is as
if we asked our kindergartner to count a set with six objects. She
might reply “I can’t do it. Don’t got enough fingers on my hand.”

Let us raise the level of the discussion a little. What, mathemati-
cally, do we mean by a “correspondence?” We know that a sequence
is just a function whose domain is the set of natural numbers. Thus,
our listing of the rational numbers is just a function whose domain
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is the natural numbers and whose range is contained in the set of
rational numbers.

In general, a function f from a set A to a set B is a correspondence
between points of A and points of B with the property that to each
point a of A there corresponds a well defined point f(a) of B. In
elementary calculus, the set B is almost always a set of numbers,
although, in general, it can be any set. The set A is called the
domain of the function. The range of f is the set of points f(a).
It is often denoted by the symbol f(A). The function is said to map
A onto B if B = f(A). In counting, this means that each point of B
gets counted. The function is said to be one-to-one if for all y in the
range of f , there is only one x in the domain such that f(x) = y–i.e.
if f(a) = f(b), then a = b. In terms of counting, this means that
each point of B is counted only once. The function f is said to be a
one-to-one correspondence if it is both one-to-one and onto.

A B
a

b

Range

f(a)=f(b)

Not one-to-one, not onto.

Thus, we arrive at the following definition:

Definition 1. An infinite set B is countable if there is a one-

to-one function f whose domain is the set N of natural numbers and

whose range is B. All finite sets are also countable.

More generally, if A and B are two sets, then we say that A has

the same cardinality as B if there is a one-to-one function f whose

domain is A and whose range is B.

Example 3. Prove that the intervals A = (−1, 1) and B = (1, 5)
have the same cardinality by finding an explicit one-to-one correspon-
dence. Prove your answer.
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Solution: We hope for a correspondence of the form y = ax + b.
We assume that the points correspond somewhat as in the diagram
below.

−1

5y

x 1

1

Figure 1. Corresponding intervals

Then f(−1) = 1 and f(1) = 5. Hence

1 = a(−1) + b

5 = a + b

Solving this pair of equations yields a = 2 and b = 3; hence the
correspondence is

(3) y = 2x + 3

Proof:

Into: We first show that f(x) maps A into B. Assume x ∈ A. Then

−1 < x < 1

−2 < 2x < 2

1 < 2x + 3 < 5

1 < y < 5

Hence f maps (−1, 1) into (−1, 5).

Onto:
Reversing the preceding argument shows that if −1 < y < 5 then

x ∈ (−2, 1). Hence f maps (−2, 1) onto (−1, 5). 3 pt.
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One-to-one: Suppose that f(x1) = f(x2). Then

2x1 + 3 = 2x1 + 3

2x1 = 2x2

x1 = x2

showing one-to-one.
In solving the preceding example we could have use B as the

domain of our correspondence and A as the range. Hence, instead of
corresponding x to y in Figure 1, we correspond y to x. We obtain
a formula defining such a correspondence by solving equation (3) on
page 144 for x:

(4) x =
1

2
(y − 3).

In general, if f : A 7→ B is one-to-one and onto, then for every
y ∈ B, there is one, and only one, x ∈ A such that f(y) = x. We
write x = f−1(y). The function f−1 : B 7→ A is the inverse of f(x).
Thus, formula (4) says that the function g(y) = 1

2
(y−3) is the inverse

of the function f(x) = 2x + 3.

Remark. Two functions f and g are said to be equal if they have
the same domain, the same range, and f(x) = g(x) for all x in the
domain. The particular symbols we use to denote the elements of
the domain and range have no intrinsic meaning. Thus, the following
formulas both define the inverse to the function defined by formula (3)
on page 144, provided that it is understood that the domainand range
are, respectively, (1, 5) and (−1, 1):

g(y) =
1

2
(y − 3)

g(x) =
1

2
(x − 3).

The following proposition tells us that if A has the same cardi-
nality as B, then B has the same cardinality as A. Its proof is an
exercise. (Exercise 24 on page 138.)

Proposition 2. Suppose that f : A 7→ B is one-to-one and onto.

Then f−1 : B 7→ A is one-to-one and onto.

Remarkably, when we get to infinite sets, this notion of size be-
comes very unintuitive. For example, it is easy to define a one-to-one
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correspondence between the natural numbers and the even natural
numbers. We simply define f(n) = 2n. Hence,

1 → 2

2 → 4

3 → 6

4 → 8

. . .

Thus, the set of all natural numbers has the same cardinality as the
set of all even natural numbers, despite the fact that the even numbers
are a proper subset of the set of all natural numbers!

This causes many people immense difficulty. They absolutely
refuse to accept that the set of even natural numbers could be the
same size as the set of all natural numbers. They are not questioning
our mathematics; the fact that we have a one-to-one function whose
domain is N and whose range is the even natural numbers is clear.
What they are objecting to is our interpretation of our mathemat-
ics. They are telling us that they cannot accept any notion of size
which allows a set S to have the same size as one of its proper sub-
sets. This is O.K. If the term ‘size’ bothers you, call it ‘one-to-one
correspondence’.

Remark: The notion of cardinality was introduced by the mathe-
matician Georg Cantor in 1874. At the time, it was quite controver-
sial. Eventually, however, the notion was found to be very useful and
gained wide acceptance.

Exercises

(1) Use an infinite series to express the following as fractions:

(a) .68

(b) 2.7468

(c) .7324

(2) Let x = .68. Use the decimal expansion to explain why
100x = 68 + x. Use this information to express x as a frac-
tion.

(3) Express 2.7468 as a fraction using the technique of Exer-
cise 2.
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(4) Express 47.56789 as a fraction using the technique of Exer-
cise 2.

(5) Use the technique of Exercise 2 to prove that .9 = 1.
(6) If we compute 4/13 on a hand held calculator with an 8 digit

display, we get

4

13
≈ .30769231

which certainly does not seem to repeat. Our calculator
is not capable of displaying enough digits for us to see the
repetition. There is, however, a cleaver ‘trick’ for getting our
calculator to produce as many digits as we want. We first
multiply the above equation by 10000000 getting

(5)
40000000

13
≈ 3076923.1.

The decimals for this number are the same as those for 4/13,
just shifted over seven places.

Formula (5) tells us that 13 goes into 40000000, 3076923
times with some remainder. To find the remainder, we com-
pute (using our calculator!)

40000000 − 13 · 3076923 = 1.

Hence

40000000/13 = 3076923 + 1/13.

Now, comes the main point: 1/13 represents the part of
formula (5) which is after the decimal point. The decimal
expansion of 1/13 will yield the 8 digits of the expansion of
4/13 after .3076923. Using our calculator we find

(6)
1

13
= .07692308.

Hence

4/13 ≈ .307692307692308.

It seems clear that what we are obtaining is .307692. Just
to be sure, though, let’s compute another batch of digits. We
multiply equation (6) by 10000000 getting

10000000

13
= 769230.8.
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The remainder is

10000000 − 13 · 769230 = 10

Hence
100000000

13
= 76923076 +

10

13
.

The decimal expansion for 10/13 is .76923077 which yields
the next 8 digits of 1/13; hence the next 8 digits for 4/13.
Thus

4/13 ≈ .3076923076923076923077.

This certainly seems to confirm the repetition. Of course, if
we wish to be absolutely certain, we could use the technique
of Exercise 2 to express this repeating decimal as a fraction
and see if we really get 4/13.

Finally, we are ready for the problem!
(a) Use the calculator technique described above to com-

pute the decimal expansion of 7/17 until it starts re-
peating.

(b) Using long division, compute the decimal expansion of
3/7 until it repeats. Explain how you know that it will
keep repeating. Explain why the repetition cycle in p/7
is at most 7 for any natural number p.

(c) More generally, explain why the repetition cycle in a/n
is at most n where a and n are natural numbers.

(7) Prove that (a) the square of an even number is even and (b)
the square of an odd number is odd. Hint: An integer n is
even if n = 2k for some integer k. It is odd if n = 2k + 1 for
some integer k.

(8) The concepts of even and odd group all integers into two
classes: those of the form 2k and those of the form 2k + 1.
We can also divide the set of integers into 3 classes: those of
the form 3k (class 0), those of the form 3k + 1 (class 1) and
those of the form 3k + 2 (class 2).
(a) Determine the class of each of the following:

0,1,2,3,4,5,6,7,8,9,10,11.
(b) Prove that the square of a class 0 number is class 0.
(c) Prove that the square of a class 1 number is class 1.
(d) Prove that the square of a class 2 number is class 1.
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Note that there are no numbers whose square is class 2.
Hence a class 2 number can never be a perfect square.

(9) This exercise in a continuation of Exercise 8.
(a) Prove that if p in an integer and p2 is class 0, then p is

class 0. (Hint: Explain why p cannot be class 1 or 2.)
It follows that p = 3k for some integer k.

(b) Prove that
√

3 is irrational. Hint: Repeat the proof of
Theorem 3, using class instead of even and odd.

(10) Let x and y be rational numbers. Prove that the following
numbers are all rational. You may assume that the product
and sum of two integers is an integer. (In part (a) we also
assume y 6= 0 to avoid division by 0.) We prove (a) as an
example.

(a) x/y

(b) x + y

(c) x − y

(d) xy

Proof of (a) Since x and y are rational, there are integers
a, b, c, and d such that x = a/b and y = c/d. Then

x/y =
a/b

c/d
=

a

b

d

c
=

ad

bc

This represents a rational number since both ad and bc are
integers.

(11) Using the technique of Example 2 on page 138, prove that
the following numbers are irrational. You may not use
Proposition 1. You may, however, assume that π and

√
3

are irrational. You may also assume that the sum, product,
and quotient of any two rational numbers is rational.
(a) 4

5
π

(b) 4

9
− 17

11

√
3

(c) 1

3−5
√

2

(d) y+x
√

2 where x and y are rational numbers with x 6= 0.
(e) y + xZ where x and y are rational numbers, x 6= 0 and

Z is an irrational number.
(f)

√
2 +

√
3 Hint Let x =

√
2 +

√
3 and assume that x

is rational. Ust the rationality of x2 to prove that
√

6
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is rational. Hence both x and x
√

6 = 2
√

3 + 3
√

2 are
rational. So?

(12) Only one of the following “theorems” is true. Prove the true
theorem and find an example showing the falsehood of each
of the others.
(a) The sum of two irrational numbers is irrational.
(b) The product of two irrational numbers is irrational.
(c) If x+y is irrational, then either x or y must be irrational.

(13) (a) Find a rational number between
√

101 and
√

102. Ex-
press your answer as a fraction. (Hint: Use the decimal
expansions.)

(b) Find a rational number between ln 101 and ln 102. Ex-
press your answer as a fraction.

(14) Find an explicit irrational number between 517

578
and 519

577
. Hint:

Look at the proof of Theorem 4.
(15) Find an explicit irrational number between 3166

4799
and 3165

4797
.

Hint: Look at the proof of Theorem 4.
(16) (a) Prove that for each M ∈ R, M ≥ 0, there is an m ∈ N

such that m ≥ M . Hint: Assume that this is false.
Explain how it follows that the set of natural numbers
is bounded from above. Let s = sup N. Then there is a
natural number n satisfying s − .5 < n ≤ s. (Explain!)
What does this say about n + 1?

(b) Let x = inf{n ∈ N | n ≥ M}. Then there is an n ∈ N

such that x ≤ n < x+.5. (Why?) Hence n−1 < x. How
does it follow that n− 1 < M . How does Theorem 2 on
page 135 follow?

(17) Find a one-to-one correspondence between the set of natural
numbers and the set of multiples of 3.

(18) Describe a listing of the integers. This shows that the set
of integers has the same cardinality as the set of natural
numbers.

(19) The picture below describes a method of listing all positive
rational numbers. We simply follow the indicated path, list-
ing each rational number in the order we hit it. Let us call
the resulting sequence an. Thus, a1 = 1, a2 = 2, a3 = 1/2,
a4 = 1/3, etc.
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1 2 3 4 6

1/2 2/2 3/2 4/2 5/2 6/2

1/3 2/3 3/3 4/3 5/3 6/3

1/4 2/4 3/4 4/4 5/4 6/4

1/5 2/5 3/5 4/5 5/5 6/5

5

Counting the rationals

(a) What is the first n such that an = 5/3?
(b) This is not a one-to-one correspondence. Demonstrate

this by finding values of n and m with n 6= m such that
an = am = 2/3.

(c) We may obtain a one-to-one correspondence by omitting
all non-reduced fractions. What is the 14th fraction in
this reduced list?

(d) Describe a listing of the set of all rational numbers, in-
cluding negatives and 0.

(20) The Hotel Infinity has an infinite number of rooms numbered
1,2,3,... All rooms are occupied. A guest comes in and asks
for a room. You respond, “No problem. We’ll just move each
guest over one room, so that the guest in room 1, moves to
room 2, the one in room 2 moves to room 3, etc., leaving
room 1 free for you.”
(a) Next a bus with 10 people shows up. How do you ac-

commodate them?
(b) A bus with an infinite (but countable) number of guests

shows up. How do you accommodate them?
(c) Now (HELP!) an infinite (but countable) number of

buses, each with an infinite number (but countable) of
guests shows up. You can still accommodate all of them.
How?

(21) You might think that large intervals contain more points
than small intervals. Not so. Find an explicit one-to-one
correspondence between the given intervals.
(a) (1, 2) and (3, 7). (Hint: Try a function of the form

f(x) = ax + b.)
(b) (0, 1) and (1,∞)
(c) (0, 1) and (0,∞)
(d) (−∞,∞) and (−1, 1).
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(22) Find a one-to-one correspondence between [0, 1] and (0, 1).
Hint: Using lists similar to that on p. 140, describe a one-
to-one correspondence between the rational numbers in [0, 1]
and those in (0, 1). What is left?

(23) Well surely there are more points in a square than in an
interval. NOT SO! Here is a function f whose domain is the
interval [0, 1] and whose range is the square S = {(x, y) |0 ≤
x ≤ 1 and 0 ≤ y ≤ 1}.

0 1 0 1

1

f

a

f maps the interval onto the square!

 f(a)=(x,y)

Let a ∈ [0, 1]. Write a as a decimal as a = .a1a2a3 . . . .
We shall stipulate that, for the purposes of computing our
function, if a has two expansions, then we shall always choose
the expansion with an infinite number of 9’s. Thus, if a =
.27, we choose the expansion a = .269.

We define

f(a) = (x, y)

where

x = .a1a3a5 . . . a2n+1 . . .

and

y = .a2a4a6 . . . a2n . . .

(Here, (x, y) is a point in R
2, not an open interval in R!)

Thus, for example

f(7/55) = f(.1272727 . . . )

= (.1777 . . . , .222 . . . )

= (8/45, 2/9)

f(.27) =f(.26999 . . . )

= (.2999, .6999)

= (.3, .7) = (3/10, 7/10)



9. IRRATIONAL NUMBERS 153

(a) Compute f(1/n) for 1 ≤ n ≤ 6. Express the answer in
fractional form. Remember to use the expansion with
an infinite number of 9’s if you have a choice!

(b) Find a values of a and b such that f(a) = (1/3, 1/4) and
f(b) = (1, 1/3). Remember to use the expansion with
an infinite number of 9’s if you have a choice!

(c) Prove that the range of f is the whole square.
(24) Prove Proposition 2 on page 145.


