MODIFIED HILBERT AXIOMS

Note: We will *assume* elementary facts from set theory involving set membership, unions, and intersections.

Undefined terms: Point, line.

Incidence Axiom 0 A line is a set of points.

Definition A point P is said to be on a line ℓ if it is an element of ℓ .

Incidence Axiom 1 If P and Q are two different points then there is exactly one line ℓ with both P and Q on it.

Incidence Axiom 2 For every line ℓ there are at least 2 points on it.

Incidence Axiom 3 For every line ℓ there is at least one point not on it.

Undefined term: A * B * C (read this as "*B* is between *A* and *C*.")

- **Betweenness Axiom 1** If A * B * C is true then A, B, and C are three different points all on the same line, and C * B * A is also true.
- **Betweenness Axiom 2** If B and D are two different points, then there are points A, C and E lying on line \overrightarrow{BD} such that the statements A * B * D, B * C * D, and B * D * E are all true.
- **Betweenness Axiom 3** If A, B, and C are three different points on a line ℓ then exactly one of the statements A * B * C, A * C * B, and B * A * C is true.
- **Definition** Given two different points A and B we define the segment AB to be the set consisting of A, B, and all points C for which A * C * B is true.
- **Definition** Let ℓ be any line, and let A and B be any points that do not lie on ℓ . We say that "A and B are on opposite sides of ℓ " if the segment AB intersects ℓ . Otherwise we say that "A and B are on the same side of ℓ ."
- **Betweenness Axiom 4** Let ℓ be any line and A, B and C any three points not on ℓ .
 - (i) If A and B are on the same side of l, and B and C are also on the same side of l, then A and C are on the same side of l.

- (ii) If A and B are on opposite sides of l, and B and C are also on opposite sides of l, then A and C are on the same side of l.
- **Definition** If A and B are two different points then the ray AB is the set consisting of A and B and all points C for which either A * C * B or A * B * C is true.
- **Definition** If A, B and C are three points which are not all on the same line then $\angle ABC$ is the union of the two sets \overrightarrow{BA} and \overrightarrow{BC} .
- Undefined terms: Congruence of segments and of angles.
- **Congruence Axiom 1** If C is a point on ray AB with $AB \cong AC$ then B = C.
- **Congruence Axiom 2** Every segment is congruent to itself. If $AB \cong CD$ then $CD \cong AB$. If $AB \cong CD$ and $CD \cong EF$ then $AB \cong EF$.
- **Congruence Axiom 3** Suppose that the statements A * B * C, A' * B' * C' are both true.
 - (i) If $AB \cong A'B'$ and $BC \cong B'C'$ then $AC \cong A'C'$.
 - (ii) If $AB \cong A'B'$ and $AC \cong A'C'$ then $BC \cong B'C'$.
- **Congruence Axiom 4** Given $\angle ABC$, if D is a point on the same side of \overrightarrow{AB} as C, and if $\angle ABC \cong \angle ABD$, then D is on \overrightarrow{BC} .
- **Congruence Axiom 5** Every angle is congruent to itself. If $\angle AB \cong \angle CD$ then $\angle CD \cong \angle AB$. If $\angle AB \cong \angle CD$ and $\angle CD \cong \angle EF$ then $\angle AB \cong \angle EF$.
- **Definition** $\angle ABC$ is a *right* angle if there is a point D on line AB' with A * B * D and $\angle ABC \cong \angle DBC$.
- Congruence Axiom 6 If two angles are both right angles, then they are congruent.
- **Definition** If A, B, and C are three points not all on the same line, then $\triangle ABC$ is the union of the segments AB, AC, and BC.
- **Definition** $\triangle ABC \cong \triangle DEF$ means that all of the following statements are true: $AB \cong DE, AC \cong DF, BC \cong EF, \angle ABC \cong \angle DEF, \angle ACB \cong \angle DFE$, and $\angle BAC \cong \angle EDF$.

- **Congruence Axiom 7** If $AB \cong DE$, $AC \cong DF$, and $\angle BAC \cong \angle EDF$ then $\triangle ABC \cong \triangle DEF$.
- **Definition** Given two different points A and B, the circle with center A passing through B is the set of all points C with $AC \cong AB$. We will write B(A) for this circle.
- **Definition** A point D is *inside* circle B(A) if either D = A or there is a point C on the circle with A * D * C. A point D is *outside* circle B(A) if there is a point C on the circle with A * C * D.
- **Intersection Axiom 1** If D is inside circle B(A) then any ray starting at D intersects the circle at exactly one point.
- **Intersection Axiom 2** If a circle has one point inside and one point outside another circle, then the two circles intersect.
- **Definition** Two lines are parallel if they do not intersect.
- **Intersection Axiom 3** If two lines are parallel then any line which intersects one must also intersect the other.