Exam 1

Covers Sections 6.1, 6.2, 6.3. 6.4 and all of 6.5

1. Which of the following angles is **NOT** coterminal with 140° ?

A.	500°
B.	$\frac{25\pi}{9}$
C.	-220°
D.	-940°
E.	$\frac{41\pi}{9}$

- 2. The distance between two points *A* and *B* on Earth is measured along a circle having center *C* at the center of Earth and radius equal to the distance from *C* to the surface. If the diameter of Earth is approximately 8000 miles, approximate, to the nearest mile, the distance between *A* and *B* if angle ACB is 31°?
 - A. 2,164 miles
 - B. 3,246 miles
 - C. 4,328 miles
 - D. 3,787 miles
 - E. None of the above.
- 3. Find the angle that is supplementary to 12°34'8"
- A. 167°24'40"
- B. 77°25'52"
- C. 167°25'52"
- D. 77°24'40"
- E. None of the above.

Exam 1

Covers Sections 6.1, 6.2, 6.3. 6.4 and all of 6.5

4. Given $\sec \theta = \frac{6}{5}$ and $\sin \theta > 0$, what is the exact value of $\sin \theta$?

A.
$$\frac{\sqrt{11}}{5}$$

B.
$$\frac{\sqrt{61}}{5}$$

C.
$$\frac{\sqrt{61}}{6}$$

D.
$$\frac{\sqrt{11}}{6}$$

E. None of the above

- 5. The Big Koala can be found 27 km north-west of Stawell, Australia in the small township of Dadswells Bridge. The Koala weighs 12 tons and is made of bronze set on a steel frame. The sculptor, Ben Van Zetton, was hired to design and construct the piece in 1988. From a distance of 31 meters from the base of The Big Koala, the angle between the flat ground and the top of the Koala is 24°. To the nearest tenth of a meter, what is the height of The Big Koala?
 - A. 13.8 meters
 - B. 69.6 meters
 - C. 12.6 meters
 - D. 28.3 meters
 - E. None of the above

Exam 1

Covers Sections 6.1, 6.2, 6.3. 6.4 and all of 6.5

6. Find the exact value of $\cos \theta$ if θ is in standard position and the terminal side of θ is in Quadrant *II* and on the line 4x + 3y = 0.

A.
$$\frac{4}{5}$$

B. $-\frac{3}{5}$
C. $-\frac{4}{5}$
D. $\frac{3}{5}$

E. None of the above

7. $\sec(-x) - \sin(x)\tan(x)$ is equivalent to which of the following?

A. tan(x)B. -cos(x)C. 1 D. -tan(x)E. cos(x)

8.	As $x \to (\pi)^+$, $\tan x \to _$

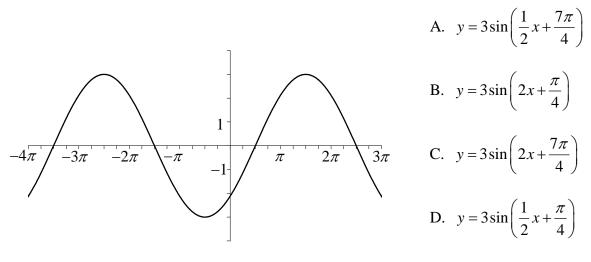
B. ∞

A. 0

- C. undefined
- D. $-\infty$
- E. 1

Exam 1

Covers Sections 6.1, 6.2, 6.3. 6.4 and all of 6.5


- 9. Which is/are true about the graph of $y = 3 + \sin x$?
 - I. Crosses the y-axis at 2 A. Only I and II are true
 - II. Crosses the *x*-axis at π B. Only I and III are true
 - III. Has a range of [2, 4] C. Only I is true
 - D. Only III is true
 - E. None are true

- 10. Find the reference angle θ_R if $\theta = 71.2$. Round your answer to the nearest hundredth of a radian.
 - A. 2.08
 - B. 0.33
 - C. 1.06
 - D. 0.51
 - E. None of the above
- 11. Approximate, to the nearest 0.0001 radian, all angles θ in the interval $[0, 2\pi)$ that satisfy the equation $\csc \theta = -5.6781$
 - A. 0.1770, 2.9646
 - B. 3.3186, 6.1061
 - C. 1.7478, 4.5354
 - D. 1.3938, 4.8894
 - E. None of the above

Exam 1

Covers Sections 6.1, 6.2, 6.3. 6.4 and all of 6.5

12. Given the graph below, write the equation in the form y = asin(bx+c) for a > 0, b > 0, and least positive real number c. [Hint: Amplitude = 3]

E. None of the above

13. What is the period and phase shift of the graph of the equation $y = \sin\left(\frac{1}{3}x - 5\right)$.

A. Period =
$$\frac{2\pi}{3}$$
, Phase Shift = $\frac{5}{3}$

B. Period =
$$6\pi$$
, Phase Shift = -15

C. Period =
$$\frac{2\pi}{3}$$
, Phase Shift = 15

D. Period =
$$6\pi$$
, Phase Shift = 15

E. Period =
$$6\pi$$
, Phase Shift = $-\frac{5}{3}$

Exam 1

Covers Sections 6.1, 6.2, 6.3. 6.4 and all of 6.5

14. Scientists sometimes use the formula $f(t) = a \sin(bt+c) + d$ to simulate temperature variations during the day, with *t* in hours, temperature f(t) in °C, and t = 0 corresponding to midnight. Assume that f(t) is decreasing at midnight.

On a given day, the high temperature was $15 \,^{\circ}C$ and the low temperature of $9 \,^{\circ}C$ occurred at 3 A.M. What time did the high temperature occur?

A. Noon
B. 3:00 P.M.
C. 2:00 P.M.
D. 1:00 P.M.
E. 4:00 P.M.

- 15. Approximate $\csc(4.1)$ to four decimal places.
- A. -1.7397
- B. 0.9704
- C. 0.2415
- D. -1.2221
- E. None of the above

Exam 1

Covers Sections 6.1, 6.2, 6.3. 6.4 and all of 6.5

Question	Answer	Letter
1.	$\frac{41\pi}{9}$	E
2.	2,164 miles	А
3.	167°25'52"	С
4.	$\frac{\sqrt{11}}{6}$	D
5.	13.8 meters	А
6.	$-\frac{3}{5}$	В
7.	$\cos(x)$	E
8.	0	А
9.	Only III is true	D
10.	1.06	С
11.	3.3186, 6.1061	В
12.	$y = 3\sin\left(\frac{1}{2}x + \frac{7\pi}{4}\right)$	А
13.	Period = 6π , Phase Shift = 15	D
14.	3:00 P.M.	В
15.	-1.2221	D

Answers