1. Given $\triangle ABC$, find the value of c to the nearest tenth.

- A. c = 10.6
- B. c = 15.1
- C. c = 12.4
- D. c = 12.8
- E. None of the above.

2. Find all solutions of the equation using n as an arbitrary integer.

$$\cot \beta = -\frac{1}{\sqrt{3}}$$

- A. $\beta = \frac{5\pi}{6} + \pi n$
- B. $\beta = \frac{\pi}{3} + \pi n$
- $C. \quad \beta = \frac{\pi}{6} + \pi n$
- D. $\beta = \frac{2\pi}{3} + \pi n$
- E. None of the above

3. Find the perimeter of the five-sided figure to the nearest tenth of a centimeter.

- A. 40.2 cm
- B. 38.0 cm
- C. 41.4cm
- D. 43.1cm
- E. None of the above

- 4. A 31 foot ladder leans against the side of a building such that the angle between the ladder and the building is 20°. If the distance from the bottom of the ladder to the building is increased by 3 feet, approximately how far does the top of the ladder move down the building? Please round your answer to the nearest tenth of a foot.
 - A. 2.8 feet
 - B. 1.3 feet
 - C. 6.1 feet
 - D. 0.9 feet
 - E. None of the above

- 5. An airplane, flying at a speed of 300 miles per hour, flies from Point A in the direction 130° for 45 minutes and then flies in the direction 40° for 30 minutes. In what direction does the plane need to fly in order to get back to A? Please round your answer to the nearest whole degree.
 - A. 270°
 - B. 265°
 - C. 276°
 - D. 254°
 - E. None of the above

6. Given $\triangle ABC$, express a in terms of β and b.

- A. $a = b \tan \beta$
- B. $a = b \sec \beta$
- C. $a = b \csc \beta$
- D. $a = b \sin \beta$
- E. $a = b \cot \beta$

7. Find all solutions of the equation using n as an arbitrary integer.

$$\sin\left(2x-\frac{\pi}{4}\right)=1$$

A.
$$x = \frac{3\pi}{8} + 2\pi n, \frac{7\pi}{8} + 2\pi n$$

$$B. \quad x = \frac{3\pi}{8} + \pi n$$

$$C. \quad x = \frac{3\pi}{8} + \pi n, \frac{7\pi}{8} + \pi n$$

D.
$$x = \frac{3\pi}{8} + 2\pi n$$

E. None of the above

8. Find all the solutions of the equation that are in the interval $[0,2\pi)$.

$$2\cos^2 t - 5\cos t - 3 = 0$$

A.
$$t = \frac{\pi}{3}, \frac{5\pi}{3}$$

B.
$$t = 0, \pi$$

C.
$$t = \frac{2\pi}{3}, \frac{4\pi}{3}$$

D.
$$t = -\frac{1}{2}$$
, 3

E. None of the above

9. Express as a trigonometric function of one angle.

 $\cos 44^{\circ} \cos 33^{\circ} - \sin 44^{\circ} \sin 33^{\circ}$

- A. sin 77°
- B. cos11°
- C. sin11°
- D. cos 77°
- E. None of the above

10. Find the exact value of $\sin \frac{\pi}{3} + \sin \frac{\pi}{4}$.

- $A. \ \frac{\sqrt{3}-\sqrt{2}}{2}$
- $B. \quad \frac{\sqrt{6} \sqrt{2}}{4}$
- $C. \quad \frac{\sqrt{3} + \sqrt{2}}{2}$
- $D. \ \frac{\sqrt{6} + \sqrt{2}}{4}$
- E. None of the above

11. Find the exact value of b.

- A. 3
- B. $3\sqrt{3}$
- C. 6
- D. $3\sqrt{2}$
- E. None of the above

- 12. If $\cos \alpha = \frac{4}{5}$ and $\cot \beta = \frac{7}{4}$ for a fourth-quadrant angle α and a third-quadrant angle β , find the exact value of $\cos(\alpha + \beta)$.
 - A. $\frac{16}{5\sqrt{65}}$
 - B. $\frac{-8}{\sqrt{65}}$
 - C. $\frac{-16}{5\sqrt{65}}$
 - D. $\frac{8}{\sqrt{65}}$
 - E. None of the above
- 13. Find the exact value of $\tan 2\theta$ if $\cos \theta = -\frac{3}{7}$; $-270^{\circ} < \theta < -180^{\circ}$.
 - A. $\frac{-12\sqrt{10}}{31}$
 - B. $\frac{12\sqrt{10}}{49}$
 - C. $\frac{-12\sqrt{10}}{49}$
 - D. $\frac{12\sqrt{10}}{31}$
 - E. None of the above

- 14. $\frac{\sin^2(2\alpha)}{\sin^2\alpha}$ is equivalent to which of the following.
- A. $4\cos^2\alpha$
- B. 2
- C. $2\cos\alpha$
- D. $4\sin^2 \alpha$
- E. $2\sin\alpha$

15. Find the solutions of the equation that are in the interval $[0,2\pi)$.

$$\cos(2t) - \sin t = 0$$

- A. $\frac{\pi}{3}, \frac{2\pi}{3}, \frac{\pi}{2}$
- B. $\frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}$
- C. $\frac{4\pi}{3}, \frac{5\pi}{3}, \frac{\pi}{2}$
- D. $\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$
- E. None of the above

Answers

Spring 2007

Question	Answer	Letter
1.	<i>c</i> = 9.4	E.
2.	$\beta = \frac{2\pi}{3} + \pi n$	D.
3.	y = 40.2 cm	A.
4.	1.3 feet	B.
5.	276°	C.
6.	$a = b \cot \beta$	E.
7.	$x = \frac{3\pi}{8} + \pi n$	В.
8.	$t = \frac{2\pi}{3}, \frac{4\pi}{3}$	C.
9.	cos 77°	D.
10.	$\frac{\sqrt{3}+\sqrt{2}}{2}$	C.
11.	3	A.
12.	$-\frac{8}{\sqrt{65}}$	В.
13.	$\frac{12\sqrt{10}}{31}$	D.
14.	$4\cos^2\alpha$	A.
15.	$\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$	D.