1. If $f(x)=-x^{2}-3 x+4$, calculate $f(-2)$.
A. -6
B. 0 C. 2 D. 6 E. 14
2. If $f(x)=2 x^{2}-x+1$, find and simplify $f(x+2)$.
A. $2 x^{2}-x+3$ B. $2 x^{2}+7 x+7$ C. $2 x^{2}-x+7$
D. $2 x^{2}+7 x+11$ E. $2 x^{2}-x+11$
3. Simplify: $(3 x-7)(2 x+4)-4(x-3)$.
A. $6 x^{2}-11 x-16$ B
B. $6 x^{2}-6 x-40$ C. $6 x^{2}-4 x-16$
D. $6 x^{2}-11 x-40$ E. $6 x^{2}-6 x-16$
4. Simplify: $\frac{9 x^{2}-4}{3 x^{2}+x-2} \cdot \frac{2 x+2}{12 x^{2}+11 x+2}$
A. $\frac{2 x+2}{(4 x+1)(x+1)}$
B. $\frac{2}{4 x+1}$
C. $\frac{3 x+2}{(3 x+1)(2 x+1)}$
D. $\frac{1}{2 x+1}$ E. $\frac{2(3 x-2)}{(4 x+1)(3 x+2)}$
5. At 6 a.m. a snowplow, traveling at a constant speed, begins to clear a street. At 8 a.m. a car begins traveling that street from the snowplow's starting point, at a speed of $30 \mathrm{mi} / \mathrm{hr}$. Half an hour later, the car reaches the snowplow. Find the speed of the snowplow.
A. $6 \mathrm{mi} / \mathrm{hr}$ B. $7.5 \mathrm{mi} / \mathrm{hr}$ C. $7.6 \mathrm{mi} / \mathrm{hr}$ D. $12.2 \mathrm{mi} / \mathrm{hr}$ E. $30 \mathrm{mi} / \mathrm{hr}$
6. A box with a square base and no top is to be made from a square piece of tin by cutting out a 3 -inch square from each corner and folding up the sides. If the box must hold $48 \mathrm{in}^{3}$, which equation can be used to find the length of the side of the piece of tin?
A. $3(x-3)(x-3)=48$
B. $x(x-3)(x-3)=48$ C. $3(x-6)(x-6)=48$
D. $x(x-6)(x-3)=48$
E. $3(x-6)(x-3)=48$
7. Find the slope of the line containing the points $(-2,4)$ and $(6,-3)$.
A. 4
B. $-\frac{7}{8}$
C. $\frac{1}{4}$
D. $-\frac{8}{7}$
E. $-\frac{1}{2}$
8. Suppose 280 tons of corn were harvested in 5 days and 940 tons in 20 days. If the relationship between tons T and days d is linear, express T as a function of d.
A. $T(d)=5 d+280$
B. $T(d)=-44 d+500$
C. $T(d)=60 d+280$
D. $T(d)=60 d+44$
E. $T(d)=44 d+60$
9. If $f(x)=\sqrt{x+1}$ and $g(x)=x^{2}+7$ then $(f \circ g)(-1)=$
A. 3
B. $\sqrt{7}$ C. 0
D. 7 E. $\sqrt{3}$
10. $\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x^{2}-1}=$
A. -3 B. 0 C. 3 D. 5 E. Limit does not exist.
11. $\lim _{x \rightarrow \infty} \frac{x^{3}-x^{2}}{2 x^{2}-3 x+1}=$
A. -1
B. $0 \quad$ C. $\frac{1}{2}$
D. 1 E. Limit does not exist.
12. $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-3(x+\Delta x)-\left(x^{2}-3 x\right)}{\Delta x}=$
A. $-4 x+3$ B. 3 C. $-4 x$ D. $2 x-3$ E. -3
13. Find y^{\prime} if $y=9 x^{2}+\frac{1}{4 x^{3}}-\sqrt{x}+1$.
A. $18 x-\frac{3}{4 x^{4}}+\frac{1}{2 x^{3 / 2}}$
B. $18 x-\frac{12}{x^{4}}-\frac{1}{2 x^{1 / 2}}$
C. $18 x-\frac{3}{4 x^{4}}-\frac{1}{2 x^{1 / 2}}$
D. $18 x-\frac{12}{x^{4}}+\frac{1}{2 x^{3 / 2}}$
E. $18 x-\frac{3}{4 x^{2}}-\frac{1}{2 x^{1 / 2}}$
14. The derivative of $(7 x+4)\left(x^{2}-3 x\right)$ is:
A. $21 x^{2}-13 x$ B. $21 x^{2}-34 x-12$ C. $14 x-21$
D. $7 x^{3}-17 x^{2}-12 x$ E. $7 x^{2}+8 x-12$
15. The derivative of $\frac{x^{2}+1}{x+5}$ is:
A. $\frac{x^{2}+10 x-1}{(x+5)^{2}}$
B. $2 x$ C. $\frac{2 x^{2}+10 x}{\left(x^{2}+1\right)^{2}}$
D. $\frac{3 x^{2}+10 x+1}{(x+5)^{2}}$
E. $\frac{-x^{2}-10 x+1}{(x+5)^{2}}$
16. If $y=\left(3-x^{2}\right)^{3}$ then $y^{\prime \prime}=$
A. $-6 x\left(3-x^{2}\right)^{2}$
B. $24 x^{2}\left(3-x^{2}\right)-6\left(3-x^{2}\right)^{2}$
C. $6\left(3-x^{2}\right)$
D. $24 x^{2}\left(3-x^{2}\right)$ E. $12 x^{2}-6\left(3-x^{2}\right)$
17. The line tangent to the graph of $f(x)=x-\frac{1}{x}$ at $x=2$ has slope:
A. $\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{3}{2}$
D. 0 E. $\frac{5}{4}$
18. A cost function is given by $C(x)=1000 \sqrt{x^{2}+2}$. Use the marginal cost function to estimate the cost of the $11^{\text {th }}$ unit. Round your answer to the nearest cent.
A. $\$ 499.15$
B. $\$ 99.01$
C. $\$ 10,099.50$
D. $\$ 49.51$ E. $\$ 990.15$
19. Suppose the distance (in feet) covered by a car moving along a straight road t seconds after starting from rest is given by the function $f(t)=2 t^{2} \quad(0 \leq t \leq 30)$. Find the average velocity of the car over the time interval $[22,22.1]$.
A. $88.2 \mathrm{ft} / \mathrm{sec}$
B. $88.4 \mathrm{ft} / \mathrm{sec}$
C. $88.6 \mathrm{ft} / \mathrm{sec}$
D. $95.2 \mathrm{ft} / \mathrm{sec}$ E. $97.7 \mathrm{ft} / \mathrm{sec}$
20. Find all values of x for which the function $f(x)=2 x^{3}-3 x^{2}-12 x+12$ is increasing.
A. $(-1,2)$
B. $(-\infty,-1)$
C. $(2, \infty)$
D. $(-\infty,-1) \cup(2, \infty)$ E. $(-1,2) \cup(2, \infty)$
21. For what value of a does the function $f(x)=x^{2}+a x$ have a relative minimum at $x=1$?
A. -2 B. 0 C. 2 D. -1 E. 1
22. If the concentration $C(t)$ of a certain drug remaining in the bloodstream t minutes after it is injected is given by $C(t)=t /\left(5 t^{2}+125\right)$, then the concentration is a maximum when $t=$
A. 25 B. 15 C. 5 D. 10 E . There is no maximum.
23. If $f(x)=2 x^{4}-6 x^{2}$ then which one of the following is true?
A. f has a relative max. at $x= \pm \sqrt{3 / 2}$ and a relative min at $x=0$.
B. f has a relative max. at $x=0$ and a relative min. at $x= \pm \sqrt{3 / 2}$.
C. f has a relative max. at $x=-\sqrt{3 / 2}$ and a relative min. at $x=\sqrt{3 / 2}$.
D. f has a relative max. at $x=\sqrt{3 / 2}$ and a relative min. at $x=-\sqrt{3 / 2}$.
E. f has no relative max. points, but has relative min. at $x= \pm \sqrt{3 / 2}$.
24. The derivative of a function f is $f^{\prime}(x)=x^{2}-\frac{8}{x}$. Then at $x=2, f$ has:
A. an inflection point B. a relative maximum C. a vertical tangent D. a vertical asymptote E. a relative minimum
25. If $f(x)=\frac{1}{3} x^{3}-9 x+2$. Then on the closed interval $0 \leq x \leq 4$,
A. f has an absolute max. at $x=3$ and an absolute min. at $x=0$.
B. f has an absolute max. at $x=4$ and an absolute min. at $x=3$.
C. f has an absolute max. at $x=0$ and an absolute min. at $x=4$.
D. f has an absolute max. at $x=0$ and an absolute min. at $x=3$.
E. f has an absolute max. at $x=4$ and an absolute min. at $x=0$.
26. A cost function is given by $C(x)=1000 \sqrt{x^{3}+1}$. Find the marginal cost when $x=2$.
A. $\$ 166.67$
B. $\$ 333.33$
C. $\$ 4000$
D. $\$ 2000$ E. $\$ 1000$
27. A display case is in the shape of a rectangular box with a square base and open top. Suppose the volume is 21 cubic ft If x is the length of one side of the base, what value should x have to minimize the surface area? Round your answer to two decimal places.
A. 2.78 ft
B. 3.48 ft
C. 4.58 ft
D. 6.48 ft
E. 9.17 ft
28. A manufacturer determines that in order to sell x units of a product, the price per unit must be $p=1000-x$. The manufacturer also determines that the total cost of producing x units is $C(x)=3000+20 x$. Calculate the maximum profit.
A. $\$ 490$
B. $\$ 121,500$
C. $\$ 237,100$
D. $\$ 23,000$ E. There is no maximum.
29. Find all asymptotes of the function: $\frac{x-x^{2}}{3 x^{2}-x-4}$
A. vert: $x=-1, x=\frac{4}{3}$, horiz: $y=-\frac{1}{3}$ B. vert: $x=0, x=1$, horiz: $y=-1, y=\frac{4}{3}$
C. vert: $x=-1, x=\frac{4}{3}$, horiz: $y=0$ D. vert: $x=0, x=1$, horiz: $y=0$
E. vert: $x=0, x=1$, horiz: $y=-\frac{1}{3}$
30. If $y=e^{x^{2}}$ then $\frac{d y}{d x}=$
A. $e^{x^{2}}$
B. $x^{2} e^{x^{2}-1}$
C. $2 x e^{x^{2}-1}$
D. $2 x e^{x^{2}}$ E. $e^{2 x}$
31. If $y=\ln \left(1-x^{2}\right)$ then $\frac{d y}{d x}=$
A. $\frac{1}{1-x^{2}}$
B. $\frac{2 x}{\sqrt{1-x^{2}}}$
C. $\frac{-2 x}{1-x^{2}}$
D. $\frac{1}{2\left(1-x^{2}\right)}$ E. $\frac{2 x}{1-x^{2}}$
32. A population grows exponentially. In 1960 it was 50,000 and in 1965 it was 100,000 . What was the population in 1970?
A. 200,000
B. 150,000
C. 250,000
D. 300,000 E. 225,000
33. Find f^{\prime} if $f(x)=x^{2} e^{3 x}$.
A. $x e^{3 x}(x+2)$
B. $3 x^{3} e^{3 x-1}$
C. $6 x e^{3 x}$
D. $5 x^{3} e^{3 x}$ E. $x e^{3 x}(3 x+2)$
34. If $y=\ln \sqrt{1-x^{2}}$ then $\frac{d y}{d x}=$
A. $\frac{1}{\sqrt{1-x^{2}}}$
B. $-\frac{2 x}{\sqrt{1-x^{2}}}$
C. $-\frac{x}{1-x^{2}}$
D. $\frac{1}{2\left(1-x^{2}\right)}$ E. $\frac{1}{2 \sqrt{1-x^{2}}}$
35. What lump sum of money should be deposited in a money market certificate paying 8.25% interest compounded monthly to amount to 5000 in 10 years? Round your answer to the nearest dollar.
A. $\$ 2514$
B. $\$ 4669$
C. $\$ 2740$
D. $\$ 2262$ E. $\$ 2197$
36. How quickly will money double if it is invested at a rate of 8 percent compounded continuously? Round your answer to two decimal places.
A. 0.87 years
B. 25 years
C. 5.55 years
D. 8.66 years E. 6.33 years

Abstract

Answers 1. $\mathrm{D} ; 2 . \mathrm{B} ; 3 . \mathrm{E} ; 4 . \mathrm{B} ; 5 . \mathrm{A} ; 6 . \mathrm{C} ; 7 . \mathrm{B} ; 8 . \mathrm{E} ; 9 . \mathrm{A} ; 10 . \mathrm{C} ; 11 . \mathrm{E} ; 12 . \mathrm{D} ; 13 . \mathrm{C} ; 14 . \mathrm{B} ; 15 . \mathrm{A} ;$ 16. B; 17. E; 18. E; 19. A; 20. D; 21. A; 22. C; 23. B; 24. E; 25. D; 26. D; 27. B; 28. C; 29. A; 30. D; 31. C; 32. A; 33. E; 34. C; 35. E; 36. D

