MA 220

Final Exam Practice Problems

- 1. If $f(x) = -x^2 3x + 4$, calculate f(-2). A. -6 B. 0 C. 2 D. 6 E. 14
- 2. If $f(x) = 2x^2 x + 1$, find and simplify f(x + 2). A. $2x^2 - x + 3$ B. $2x^2 + 7x + 7$ C. $2x^2 - x + 7$ D. $2x^2 + 7x + 11$ E. $2x^2 - x + 11$
- 3. Simplify: (3x 7)(2x + 4) 4(x 3). A. $6x^2 - 11x - 16$ B. $6x^2 - 6x - 40$ C. $6x^2 - 4x - 16$ D. $6x^2 - 11x - 40$ E. $6x^2 - 6x - 16$
- 4. Simplify: $\frac{9x^2 4}{3x^2 + x 2} \cdot \frac{2x + 2}{12x^2 + 11x + 2}$ A. $\frac{2x + 2}{(4x + 1)(x + 1)}$ B. $\frac{2}{4x + 1}$ C. $\frac{3x + 2}{(3x + 1)(2x + 1)}$ D. $\frac{1}{2x + 1}$ E. $\frac{2(3x - 2)}{(4x + 1)(3x + 2)}$
- At 6 a.m. a snowplow, traveling at a constant speed, begins to clear a street. At 8 a.m. a car begins traveling that street from the snowplow's starting point, at a speed of 30 mi/hr. Half an hour later, the car reaches the snowplow. Find the speed of the snowplow.
 A. 6 mi/hr B. 7.5 mi/hr C. 7.6 mi/hr D. 12.2 mi/hr E. 30 mi/hr
- 6. A box with a square base and no top is to be made from a square piece of tin by cutting out a 3-inch square from each corner and folding up the sides. If the box must hold 48 in³, which equation can be used to find the length of the side of the piece of tin?
 - A. 3(x-3)(x-3) = 48 B. x(x-3)(x-3) = 48 C. 3(x-6)(x-6) = 48 D. x(x-6)(x-3) = 48E. 3(x-6)(x-3) = 48
- 7. Find the slope of the line containing the points (-2, 4) and (6, -3). A. 4 B. $-\frac{7}{8}$ C. $\frac{1}{4}$ D. $-\frac{8}{7}$ E. $-\frac{1}{2}$
- 8. Suppose 280 tons of corn were harvested in 5 days and 940 tons in 20 days. If the relationship between tons T and days d is linear, express T as a function of d.

A. T(d) = 5d + 280 B. T(d) = -44d + 500 C. T(d) = 60d + 280 D. T(d) = 60d + 44E. T(d) = 44d + 60

9. If $f(x) = \sqrt{x+1}$ and $g(x) = x^2 + 7$ then $(f \circ g)(-1) = A$. 3 B. $\sqrt{7}$ C. 0 D. 7 E. $\sqrt{3}$

10.
$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 1} =$$
A. -3 B. 0 C. 3 D. 5 E. Limit does not exist.
11.
$$\lim_{x \to \infty} \frac{x^3 - x^2}{2x^2 - 3x + 1} =$$
A. -1 B. 0 C. $\frac{1}{2}$ D. 1 E. Limit does not exist.
12.
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - 3(x + \Delta x) - (x^2 - 3x)}{\Delta x} =$$
A. $-4x + 3$ B. 3 C. $-4x$ D. $2x - 3$ E. -3
13. Find y' if $y = 9x^2 + \frac{1}{4x^3} - \sqrt{x} + 1$.
A. $18x - \frac{3}{4x^4} + \frac{1}{2x^{3/2}}$ B. $18x - \frac{12}{x^4} - \frac{1}{2x^{1/2}}$ C. $18x - \frac{3}{4x^4} - \frac{1}{2x^{1/2}}$ D. $18x - \frac{12}{x^4} +$
E. $18x - \frac{3}{4x^2} - \frac{1}{2x^{1/2}}$

 $\frac{1}{2r^{3/2}}$

Final Exam Practice Problems

14. The derivative of $(7x + 4)(x^2 - 3x)$ is: A. $21x^2 - 13x$ B. $21x^2 - 34x - 12$ C. 14x - 21 D. $7x^3 - 17x^2 - 12x$ E. $7x^2 + 8x - 12$ 15. The derivative of $\frac{x^2 + 1}{x + 5}$ is: A. $\frac{x^2 + 10x - 1}{(x + 5)^2}$ B. 2x C. $\frac{2x^2 + 10x}{(x^2 + 1)^2}$ D. $\frac{3x^2 + 10x + 1}{(x + 5)^2}$ E. $\frac{-x^2 - 10x + 1}{(x + 5)^2}$ 16. If $y = (3 - x^2)^3$ then y'' =A. $-6x(3-x^2)^2$ B. $24x^2(3-x^2) - 6(3-x^2)^2$ C. $6(3-x^2)$ D. $24x^2(3-x^2)$ E. $12x^2 - 6(3-x^2)$

17. The line tangent to the graph of $f(x) = x - \frac{1}{x}$ at x = 2 has slope: A. $\frac{1}{4}$ B. $\frac{3}{4}$ C. $\frac{3}{2}$ D. 0 E. $\frac{5}{4}$

- 18. A cost function is given by C(x) = 1000√x² + 2. Use the marginal cost function to estimate the cost of the 11th unit. Round your answer to the nearest cent.
 A. \$499.15 B. \$99.01 C. \$10,099.50 D. \$49.51 E. \$990.15
- 19. Suppose the distance (in feet) covered by a car moving along a straight road t seconds after starting from rest is given by the function $f(t) = 2t^2$ ($0 \le t \le 30$). Find the average velocity of the car over the time interval [22, 22.1].

A. 88.2 ft/sec B. 88.4 ft/sec C. 88.6 ft/sec D. 95.2 ft/sec E. 97.7 ft/sec

- 20. Find all values of x for which the function $f(x) = 2x^3 3x^2 12x + 12$ is increasing. A. (-1,2) B. $(-\infty,-1)$ C. $(2,\infty)$ D. $(-\infty,-1) \cup (2,\infty)$ E. $(-1,2) \cup (2,\infty)$
- 21. For what value of a does the function $f(x) = x^2 + ax$ have a relative minimum at x = 1? A. -2 B. 0 C. 2 D. -1 E. 1
- 22. If the concentration C(t) of a certain drug remaining in the bloodstream t minutes after it is injected is given by $C(t) = t/(5t^2 + 125)$, then the concentration is a maximum when t = A. 25 B. 15 C. 5 D. 10 E. There is no maximum.
- 23. If $f(x) = 2x^4 6x^2$ then which one of the following is true?
 - A. f has a relative max. at $x = \pm \sqrt{3/2}$ and a relative min at x = 0.
 - B. f has a relative max. at x = 0 and a relative min. at $x = \pm \sqrt{3/2}$.
 - C. f has a relative max. at $x = -\sqrt{3/2}$ and a relative min. at $x = \sqrt{3/2}$
 - D. f has a relative max. at $x = \sqrt{3/2}$ and a relative min. at $x = -\sqrt{3/2}$.
 - E. f has no relative max. points, but has relative min. at $x = \pm \sqrt{3/2}$.
- 24. The derivative of a function f is $f'(x) = x^2 \frac{8}{x}$. Then at x = 2, f has: A. an inflection point B. a relative maximum C. a vertical tangent D. a vertical asymptote
 - E. a relative minimum
- 25. If $f(x) = \frac{1}{3}x^3 9x + 2$. Then on the closed interval $0 \le x \le 4$, A. f has an absolute max. at x = 3 and an absolute min. at x = 0.
 - B. f has an absolute max. at x = 4 and an absolute min. at x = 3.
 - C. f has an absolute max. at x = 0 and an absolute min. at x = 4.
 - D. f has an absolute max. at x = 0 and an absolute min. at x = 3.
 - E. f has an absolute max. at x = 4 and an absolute min. at x = 0.

Final Exam Practice Problems

- 26. A cost function is given by $C(x) = 1000\sqrt{x^3 + 1}$. Find the marginal cost when x = 2. A. \$166.67 B. \$333.33 C. \$4000 D. \$2000 E. \$1000
- 27. A display case is in the shape of a rectangular box with a square base and open top. Suppose the volume is 21 cubic ft If x is the length of one side of the base, what value should x have to minimize the surface area? Round your answer to two decimal places.

A. 2.78 ft B. 3.48 ft C. 4.58 ft D. 6.48 ft E. 9.17 ft

28. A manufacturer determines that in order to sell x units of a product, the price per unit must be p = 1000 - x. The manufacturer also determines that the total cost of producing x units is C(x) = 3000 + 20x. Calculate the maximum profit.

A. \$490 B. \$121,500 C. \$237,100 D. \$23,000 E. There is no maximum.

29. Find all asymptotes of the function:
$$\frac{x - x^2}{3x^2 - x - 4}$$

- A. vert: $x = -1, x = \frac{4}{3}$, horiz: $y = -\frac{1}{3}$ B. vert: x = 0, x = 1, horiz: $y = -1, y = \frac{4}{3}$
- C. vert: $x = -1, x = \frac{4}{3}$, horiz: y = 0 D. vert: x = 0, x = 1, horiz: y = 0
- E. vert: x = 0, x = 1, horiz: $y = -\frac{1}{3}$

30. If
$$y = e^{x^2}$$
 then $\frac{dy}{dx} =$
A. e^{x^2} B. $x^2 e^{x^2 - 1}$ C. $2x e^{x^2 - 1}$ D. $2x e^{x^2}$ E. e^{2x}
31. If $y = \ln(1 - x^2)$ then $\frac{dy}{dx} =$

A.
$$\frac{1}{1-x^2}$$
 B. $\frac{2x}{\sqrt{1-x^2}}$ C. $\frac{-2x}{1-x^2}$ D. $\frac{1}{2(1-x^2)}$ E. $\frac{2x}{1-x^2}$

- 32. A population grows exponentially. In 1960 it was 50,000 and in 1965 it was 100,000. What was the population in 1970?
 - A. 200,000 B. 150,000 C. 250,000 D. 300,000 E. 225,000
- 33. Find f' if $f(x) = x^2 e^{3x}$. A. $x e^{3x}(x+2)$ B. $3x^3 e^{3x-1}$ C. $6x e^{3x}$ D. $5x^3 e^{3x}$ E. $x e^{3x}(3x+2)$
- 34. If $y = \ln \sqrt{1 x^2}$ then $\frac{dy}{dx} =$ A. $\frac{1}{\sqrt{1 - x^2}}$ B. $-\frac{2x}{\sqrt{1 - x^2}}$ C. $-\frac{x}{1 - x^2}$ D. $\frac{1}{2(1 - x^2)}$ E. $\frac{1}{2\sqrt{1 - x^2}}$
- 35. What lump sum of money should be deposited in a money market certificate paying 8.25% interest compounded monthly to amount to 5000 in 10 years? Round your answer to the nearest dollar.

A. \$2514 B. \$4669 C. \$2740 D. \$2262 E. \$2197

36. How quickly will money double if it is invested at a rate of 8 percent compounded continuously? Round your answer to two decimal places.

A. 0.87 years B. 25 years C. 5.55 years D. 8.66 years E. 6.33 years

Answers

1. D; 2. B; 3. E; 4. B; 5. A; 6. C; 7. B; 8. E; 9. A; 10. C; 11. E; 12. D; 13. C; 14. B; 15. A; 16. B; 17. E; 18. E; 19. A; 20. D; 21. A; 22. C; 23. B; 24. E; 25. D; 26. D; 27. B; 28. C; 29. A; 30. D; 31. C; 32. A; 33. E; 34. C; 35. E; 36. D