MA 261

REVIEW PROBLEMS FOR EXAM 2

Exam 2 will cover Lessons 14-25.

P. 975: 27, 29, 34(a), 35, 37, 39, 42, 45, 46, 47, 48, 52, 56, 60, 61.

P. 1050: 5, 8, 13, 17, 24, 26, 36(b), 38, 39, 41, 47.

Answers to Even Numbered Problems

P. 975

34. (a) dA = 0.017.

42.
$$\frac{\partial z}{\partial x} = \frac{2xz^3 - yze^{xyz}}{xye^{xyz} - 4yz^3 - 3x^2z^2}, \quad \frac{\partial z}{\partial y} = \frac{z^4 - xze^{xyz}}{xye^{xyz} - 4yz^3 - 3x^2z^2}.$$

46. $\frac{25}{6}$

- **48.** $\nabla f(0,1,2) = 2\mathbf{i} + \mathbf{k}$ is the direction of most rapid increase. The rate of increase in that direction is $|\nabla f(0,1,2)| = |2\mathbf{i} + \mathbf{k}| = \sqrt{5}$.
- **52.** (0,0) is a saddle point. $(1,\frac{1}{2})$ is a local minimum.
- **56.** The absolute maximum of f on D is $f(0,\pm 1)=2e^{-1}$ and the absolute minimum is f(0,0)=0.
- **60.** The absolute maximum is $f(\sqrt{2}, \sqrt{2}) = \sqrt{2}$ and the absolute minimum is $f(-\sqrt{2}, -\sqrt{2}) = -\sqrt{2}$.

P. 1050

8.
$$\frac{1}{4}$$
.

24.
$$\frac{1}{1080}$$
.

26.
$$\frac{13}{24}$$

36. (b)
$$m = \frac{a^5}{15}$$
. $M_x = \frac{a^6}{24}$. $M_y = \frac{\pi a^6}{96}$. $(\overline{x}, \overline{y}) = \left(\frac{5\pi a}{32}, \frac{5a}{8}\right)$.

38.
$$\frac{3\pi}{a^2}\sqrt{a^2+1}$$
.