ANSWERS TO MA 137 FINAL EXAM REVIEW PROBLEMS

1. Set B contains $\mathbf{2 0}$ elements.
2. $A \cup C$ contains 30 elements.
3. $B \cup C^{\prime}$ contains $20+7+8=\mathbf{3 5}$ elements.
4. $B^{\prime} \cap C^{\prime}$ contains $7+8=15$ elements, so $A \bigcup\left(B^{\prime} \cap C^{\prime}\right)$ contains $15+6+4+1=\mathbf{2 6}$ elements.
5. Robert paid $54 \div \frac{3}{2}=54 \cdot \frac{2}{3}=\frac{54}{1} \cdot \frac{2}{3}=\$ 36$ for the book.
6. Divide: $6 \frac{3}{4} \div 1 \frac{1}{2}=\frac{27}{4} \div \frac{3}{2}=\frac{27}{4} \cdot \frac{2}{3}=\frac{9}{2}$. So he can make 4 full batches. He will be left with $\frac{1}{2}$ of $1 \frac{1}{2}$ pounds remaining. This means he has $\frac{1}{2} \cdot \frac{3}{2}=\frac{3}{4}$ pounds of flour left over.
7. Your sketch should have two long-flats and one flat. The numeral is $\mathbf{2 1 0 0}_{\text {three }}$.
8. $108=2^{2} \cdot 3^{3}$ and $4536=2^{3} \cdot 3^{4} \cdot 7$
$\operatorname{GCD}(108,4536)=2^{2} \cdot 3^{3}=108$
$\operatorname{LCM}(108,4536)=2^{3} \cdot 3^{4} \cdot 7=4536$
9. a. True: 6•2 = 12
b. True: $12 \cdot 5=60$
c. True: because 6| 60 .
d. True: $6=3 \cdot 2$, and $(3 \cdot 2) \cdot(2 \cdot 7)=2^{2} \cdot 3 \cdot 7$
e. False: 10 does not divide $2^{2} \cdot 3 \cdot 7$ because 5 is not in its prime factorization.
f. False: $50 \cdot \frac{1}{2}=25$, but $\frac{1}{2}$ is not a whole number. (Note: " $25 \mid 50$ " is a true statement.)
10. $\$ 3825$ was in the savings account.
11. Four rooms. Be careful with your units. Don't try to mix hours and minutes!
12. $\$ 337.50$
13. a. Seniors are $\mathbf{1 / 4}$ of the class.
b. Freshmen: 384; Sophomores: 240; Juniors: 96; Seniors: 240
14. The final answer should show one long-flat, three flats, three longs, and one unit. The numeral is $\mathbf{1 3 3 1}_{\text {five }}$.
15.

16. This problem essentially asks what is $\frac{1}{6}$ of $\frac{2}{5}$? This question is answered through multiplication: $\frac{2}{5} \times \frac{1}{6}=\frac{2}{30}=\frac{1}{15}$. So $\frac{1}{15}$ of the park is sand area.
17. First, since $3 \frac{1}{2}$ acres are not available as potential home sites, subtract:
$12 \frac{2}{3}-3 \frac{1}{2}=(12-3)+\left(\frac{2}{3}-\frac{1}{2}\right)=9+\left(\frac{4}{6}-\frac{3}{6}\right)=9 \frac{1}{6}$ acres area available to be made into home sites. Now the questions is: how many $\frac{3}{5}$-acres home sites can we create from $9 \frac{1}{6}$ acres. You should recognize this as the measurement concept of division: $9 \frac{1}{6} \div \frac{3}{5}=\frac{55}{6} \div \frac{3}{5}=\frac{55}{6} \cdot \frac{5}{3}=\frac{275}{18}=15 \frac{5}{18}$. So the developer can make 15 home sites. The leftover land can either be rolled into some common area or used to make a home site larger. A good side question is "how much extra land is left?" The answer is not $\frac{5}{18}$ of an acre!

