1. Find the domain D of $f(x) = \frac{x-2}{x^2+x-6}$.

A.
$$D = (-\infty, 2) \cup (2, \infty)$$

B.
$$D = (-\infty, -3) \cup (-3, \infty)$$

C.
$$D = (-\infty, -3) \cup (2, \infty)$$

D.
$$D = (-\infty, -3) \cup (-3, 2) \cup (2, \infty)$$

E.
$$D = (-3,2)$$

2. Given $g(x) = \frac{4}{x}$, then $\frac{g(x+h) - g(x)}{h} =$

A.
$$\frac{-4}{x^2}$$

A.
$$\frac{-4}{x^2}$$
B.
$$\frac{4}{x+h} - \frac{4}{x}$$

$$C. \frac{-4}{(x+h)^2}$$

D.
$$\frac{-4}{x(x+h)}$$

$$E. \frac{4}{x(x+h)}$$

3.
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2} =$$

4. Given distance function $s(t) = 3t - \cos t$, where s is in millimeters and t is in seconds, find the acceleration function a(t).

A.
$$a(t) = 3 + \cos t$$

B. $a(t) = 3 + \sin t$
C. $a(t) = \sin t$
D. $a(t) = -\cos t$
E. $a(t) = \cos t$

5. The derivative of $\frac{x^2+5}{x+1}$ is

A.
$$\frac{x^2-2x-5}{(x+1)^2}$$

B.
$$\frac{3x^2 + 2x + 6}{(x+1)^2}$$

C.
$$\frac{x^2 + 2x - 5}{(x+1)^2}$$

D.
$$\frac{-x^2-2x+5}{(x+1)^2}$$

E.
$$\frac{-3x^2-2x-6}{(x+1)^2}$$

6. Find the x-coordinate only of any points where the slope of tangent lines to the graph of $f(x) = (x^2 - 8)(x + 3)$ is 1.

A.
$$x = -3$$
, $x = 3$

B.
$$x = -1$$
, $x = 0$, $x = 3$

C.
$$x = 1$$
, $x = -3$
D. $x = 3$, $x = -1$

D.
$$x = 3$$
, $x = -1$

E.
$$x = 1$$
, $x = 0$, $x = -3$

- 7. What is the slope of the tangent line to the graph $y = (\frac{2x}{x-1})^3$ at the point (2, 64) ?
- A. 64
- B. 48
- C. -48
- D. -96
- E. 96

8. Given $g(x) = \sqrt{2x+1}$, find out g''(4) =

- A. 3
 B. $\frac{1}{3}$ C. $\frac{-1}{54}$ D. $\frac{-1}{27}$ E. $\frac{-1}{108}$

9.
$$\lim_{x \to \infty} \frac{3x^2 + x - 1}{1 + 2x - 4x^3} =$$

A. Doesn't exist

B.
$$\frac{1}{4}$$

C. 3

D. 0

E. $-\frac{3}{4}$

- 10. Given $f(x) = x^4 4x^2$, please choose the correct statement about its relative Max/Min.
- A. f has relative max at $x = \pm \sqrt{2}$, a relative min at x = 0.
- B. f has a relative max at x = 0, relative min at $x = \pm \sqrt{2}$.
- C. f has a relative max at $x = \sqrt{2}$, a relative min at $x = -\sqrt{2}$.
- D. f has a relative max at $x = -\sqrt{2}$, a relative min at $x = \sqrt{2}$.
- E. f has no relative max, but has relative min at $x = \pm \sqrt{2}$.

- 11. If $g(x) = x + \frac{4}{x}$, then on the closed interval [1, 3],
- A. g has an absolute max at x = 1, and an absolute min at x = 3.
- B. g has an absolute max at x = 2, and an absolute min at x = 3.
- C. g has an absolute max at x = 1, and an absolute min at x = 2.
- D. g has an absolute max at x = 2, and an absolute min at x = 1.
- E. g has an absolute max at x = 3, and an absolute min at x = 1.

- 12. A container company is designing an open-top, square-based, rectangular box that will have a volume of 32 in^3 . What is the minimum surface area of this box?
 - A. $32 in^2$
 - B. 48 in^2
 - C. 64 in²
 - $D. 24 in^2$
 - E. $56 in^2$

- 13. Approximate $\sqrt{3.95}$ by using linearization. Round your answer to 4 decimal places.
 - A. 1.9875
 - B. 1.9906
 - C. 1.9938
 - D. 1.9972
 - E. 1.9998

14. Find an equation of tangent line to the curve $xy^2 + 3xy = 4$ at the point (1, 1).

A.
$$4x - 5y = -1$$

B.
$$4x + 5y = 9$$

C.
$$5x + 4y = 9$$

D.
$$5x - 4y = 1$$

E.
$$x + y = 2$$

- 15. In calm waters oil spilling from the ruptured hull of a grounded tanker spreads in all directions. If the area polluted is a circle and is increasing at a rate of 200π ft^2/sec , determine how fast the radius is increasing when the radius of the circle is 20ft.
- A. $\frac{1}{2}$ ft/sec
- B. 2 ft/sec
- C. 5ft/sec
- D. 10 ft/sec
- E. 0ft/sec

- 16. What is the derivative of $2x^2e^{-x}$?
- A. $4xe^{-x}$ B. $-2x^2e^{-x}$ C. $2x(x+2)e^{-x}$ D. $2x(2-x)e^{-x}$ E. $-2x^2e^{-x-1}$

17. What is the derivative of $\frac{\ln x + 1}{x}$?

A.
$$\frac{1}{x^2}$$
B.
$$\frac{\ln x + 1}{x^2}$$

C.
$$\frac{-\ln x}{x^2}$$

C.
$$\frac{\frac{x}{-\ln x}}{x^2}$$
D.
$$\frac{1-\ln x}{x^2}$$
E.
$$\frac{\ln x + 2}{x^2}$$

E.
$$\frac{\ln x + 2}{x^2}$$

18. The population of fish in the lake after time t, in months, is given by $P(t) = \frac{1000}{1 + 2e^{-0.5t}}$, what is the rate of change of P(t)at 4 months? Choose the closest answer.

$$B. -168 / month$$

$$D. -84/month$$

- 19. A sample of E.coli is growing exponentially at $40^{\circ}c$, represented by $P(t) = 1000e^{0.033t}$, where t is measured in minutes. What is the generation time? Choose the closest answer.
 - A. 693 min
 - B. 1000 min
 - C. 21min
 - D. 42 min
 - E. 63 min

 $20. \quad \int 2e^{-3x} dx = ?$

- A. $-6e^{-3x} + c$
- B. $-6e^{-3x-1}+c$
 - C. $\frac{-2}{3}e^{-3x} + c$
 - D. $\frac{2}{3}e^{-3x} + c$
- E. $\frac{-2}{3}e^{-3x-1} + c$

21. Suppose that the acceleration function a(t) = -6t + 3, the initial velocity is v(0) = 10, and the initial position s(0) = 20. Find the distance function s(t).

A.
$$s(t) = -t^3 + \frac{3}{2}t^2 + 10t$$

B.
$$s(t) = -3t^2 + 3t + 20$$

C.
$$s(t) = -t^3 + \frac{3}{2}t^2 + 10$$

D.
$$s(t) = -t^3 + \frac{3}{2}t^2 + 20$$

E.
$$s(t) = -t^3 + \frac{3}{2}t^2 + 10t + 20$$

22. Evaluate $\int_{1}^{e} (x + \frac{1}{x}) dx$

A.
$$\frac{e^2}{2} + 1$$

B.
$$\frac{1}{e} + e$$

C.
$$\frac{e^2}{2} + \frac{1}{2}$$

D.
$$\frac{e^2}{2} + \frac{3}{2}$$

E.
$$e^2 + 1$$

- 23. Find the area under the graph $f(x) = 2\cos 3x$ over the interval $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$.
 - A. 0 B. $\frac{2}{3}$ C. $\frac{4}{3}$

 - D. 4
 - E. 8

- 24. Find the area of the region bounded by y = x and $y = x^4$.

 - A. $\frac{7}{10}$ B. $\frac{1}{10}$ C. $\frac{3}{10}$ D. $-\frac{1}{10}$ E. $-\frac{3}{10}$

25. A city grows at a rate of 156t+1000 people per year, where t is time in years after the beginning of 2002. Given that the population at the beginning of 2002 is 13210. What is the population at the beginning of 2007?

A. 18210

B. 14990

C. 16410

D. 20410

E. 26420