
MA 425 ASSIGNMENT SHEET Fall 2008
Text: Saff/SniderFundamentals of Complex Analysis , Third Edition

This sheet will be updated as the semester proceeds, and I expect to give several
quizzes/exams. The material is especially attractive, in that we have an opportunity
to see our elementary calculus in a new light, and also to discover rather amazing
ways to view it, all from introducing ‘imaginary’ numbers! There will be homework
collected most days, and it would help the discussion if you would e-mail me in
advance asking for discussion of particular problems.

Taking this course determined the mathematical interest for my next 50 (!)
years.

It is important to come to every class, and read the book at home.
Some of the homework problems have answers/solutions in the back. There are

far too many problems for us to penetrate a good percent in class, but there are
lots of opportunities for you to work out problems on your own. I will be glad to
write out solutions and post them unpon (reasonable) request.

In class I will do some extra problems, and they will also be considered as part
of the basic course.

D. Drasin, MA 622, 4-1974; e-mail: drasin@math.purdue.edu
Office Hours: MF 10:30-11 AM , W 2:30-3 PM and by appointment. Feel free to
email me too.

1.1–2 Introduction and later highlights. Some of the main highlights can be
introduced in the first lecture. |z|, z̄, z = x+ iy : we almost always take x, y, u, v to
be real and z, w to be complex . A complex number z can be written as z = x + iy
(with x, y real) (or w = u + iv) and the complex numbers form a field . We assume
familiarity with the real numbers and elementary calculus, although you should get
new insights on them.

Complex numbers can be identified with vectors in the plane.
Problems: p. 5: 3, 4, 5ac, 7b, 16bd, 30ad, 21, 30 [Note: 21 is simply using

things you might know working with real numbers; problem 30 introduces us to the
main loss when working with complex numbers: inequalities].

p. 12: 1, 5 (this can be done more easily after §1.4!), 7cdfg, 11, 16.

1.3 Polar form. x + iy = r(cos θ + i sin θ). The‘function’ θ always causes
problems, but if you calmly think about it you should be able to handle it–it is
important that you understand it from the beginning! Rectangular coordinates are
good for addition, polar coordinates good for multiplication (and logarithms, as we
see soon)–which is why we endure them. arg z vs Arg z, Arg z.

Absolute value is far more important here than in calculus; it has the advantage
in being defined by a formula: |z|2 = zz̄.

Problems: p. 22: 1b, 3, 5(all), 7b,d,h, 8, 10b, 19.



1.4 Complex exponential. Unquestionably the most important function:

ex+iy = ex(cos y + i sin y),

unites algebra to trigonometry. DeMoivre’s formula is an observation only, as are
all the trig identities we (sometimes) see in high school.

Problems: p. 31: 4ac, 7 (don’t forget this one!), 11, 12b, 20ab, 23a.

1.5 Powers and Roots. (This is a corollary to the previous section.) Notice the
special use of the nth root ωn for each positive integer n.

Problems: p. 37: 3, 4b, 6c, 7b, 10, 11, 16.

1.6 Planar sets. domain: open connected set. In calculus our functions are
usually defined on [a, b] or, more generally, on closed, bounded sets. As we will see
in the next chapter, our functions will usually be defined on domains. Closed sets.
Are there sets neither open nor closed?

Problems: p 42: 2-8, 11, 15-17, 19, 20.

1.7 Stereographic projection. In real calculus we have ±∞, but here there is
only on ∞; the most ‘natural’ way to see it is using the Riemann sphere. We work
out the relation between (x1, x2, x3), the coordinates in R3 of the sphere, and the
coordinates x, y in the plane, see p. 47. From the viewpoint of the sphere, lines
and circles are the same thing: lines are circles passing through ∞, the north pole
of the sphere. chordal distance.

Problems: p. 50: 1bc, 2, 5a-c, 6, 9.

2.1 We start calculus. w = u + iv = f(x + iy). Graphs require two complex
planes. Composition, just as in (real) calculus.

Problems: p. 56: 1adef, 4, 5, 7ab, 8ab, 10 (all), 13.

2.2 Limits and continuity. Still in MA 161! Are there any differences with what
you had in high-school or as a freshman?

We also recall differentiability, which is part of the MA 261 syllabus. A real-
valued function u(x, y) is differentiable at (a, b) if there are constants A, B and
functions ε(x, y), η(x, y) so that

u(x, y)− u(a, b) = A(x− a) + B(y − b) + ε(x, y) + η(x, y)

subject to

ε(x, y)√
(x− a)2 + (y − b)2

+
η(x, y)√

(x− a)2 + (y − b)2
→ 0

as (x, y) → (a, b).
Problems: p. 63: 1, 2, 4, 5, 7(all), 11 (all) —for some you ‘plug in’, for other

you have to work a bit, 12 (important!), 14.



Differentiability problems: Show that if u is differentiable at (a, b) then the
partial derivatives ux, uy exist at (a, b). Show that A = ux(a, b), B = uy(a, b).
Next, find a function which is differentiable at (0, 0) and whose partial derivatives
exist only at that point. Show that if u is differentiable at (a, b) then u is continuous
there.

2.3 Analyticity. Now we begin to divirge from MA 161. The definition of
derivative should be familiar, but we will see that it has surprising consequences
here. For example, a nice function such as f(z) = z̄ has no derivative. But usual
formulas carry through. Definition of analytic, entire. We will discuss problem 8
carefully in class.

Problems: p. 70: 2, 3, 4c, 6, 7(all), 9ac, 11a, c, d, g, h.
2.4 Cauchy-Riemann. In real variables it is hard to find a continuous function

which has no derivative, but in this course, the Cauchy-Riemann equations give a
simple way to produce many.

Problems: Here is an important one which brings back the issue of (real)
differentiability. Prove directly from the definition that f(z) = u(z) + iv(z) has a
derivative at z0 = (a, b), if and only if u and v are differentiable at (a, b) and the
Cauchy-Riemann equations hold (half of this is in the book on this section, but the
proof is surprisingly easy). In how much of page 75 is the author talking about
(real) differentiability without using the word?

Other problems: p. 77: 2, 5, 6 (we may do this one later a different way!),
8, 12, 15 (the Jacobian is often introduced in MA 261).

2.5 Harmonic Functions. “Real parts of analytic functions are the same thing
as harmonic functions.” Strictly speaking, this is false , but behind it is a truth
you should be able to understand. Differences between local and global properties.
Isothermal coordinates (relate to problem 8, sec. 2.3).

Problems: : p. 84: 3acef, 6, 9 (one way to do this is write x = log |z|, y = arg z
(makes sense locally) and use the ordinary laplace equation), 12 14 (not easy, but
once you see it...), 17ab

2.6 Harmonic functions as steady-state temperature (optional). If we know the
temperature at the boundary of every point of a nice domain, we can find it at each
point inside by solving the Dirichlet problem.

Problems: p. 90: 1, 2

2. 7 Julia/Mandelbrot (optional). Let f be analytic and map D → D (here we
take D to be the complex plane C). Then we can take a point z ∈ D and investigate
the behavior of the sequence {z, f(z), f(f(z)) := f2(z), f3(z), . . . }, the orbit of z
under the iterates of f . This is a simple dynamical system, and in the past 25 years
has seen tremendous amount of activity (we usually don’t see modern themes in
an undergraduate course!). Terms: fixed point, basin of attraction, Jula set and
filled-in Julia set (for polynomial functions f). We might discuss some computer
pictures, depending on the interest of the class.

Problems: p. 95: 2 (think of f(z) = 2z near z = 0 as a model), 3a, 10 (there



is a good story behind that problem).

3.1 Elementary functions. We state the fundamental theorem of algebra (which
is proved later), recall Taylor’s theorem and partial fraction decomposition..

Problems: p. 108: 3ac, 5ab, 7, 11ac, 13b, 17 (after we learn about the loga-
rithm, you might see an easier way to do this).

3.2 Trigonometrial and related functions. We see a connection between algebra
and trigonometry. But ez is periodic (with an imaginary period). Calculus rules
are easy.

Problems: p. 115: 2, 3 (geometric), 5bdf, 9acd, 11, 17all, 18b (you should
not use l’hopital rule, as we should mention in class).

3.3 Logarithm. Don’t miss our discussion here, and read the book–this is often
hard to understand, and the issues are exactly those we faced when talking about
arg z = =(log z). The high-school logarithm is a special case, but we have to be
very careful about formulas such as

log(zw) = log z + log w.

We also introduce Log z,L ogz.
However, log|z| is a ‘function’, and is harmonic for z 6= 0.
Problems: p. 123: 3, 4, 6, 7, 11, 14 (hard, be careful), 19.

3.4 §2.6 reappears. we see how important the logarithm is in solving the Dirich-
let (ssteady-state temperature) problem.

Problems: p. 129: 2, 4, 5

3.5 More trigonometry. We see that clgebra and trigonetry continue to be the
same thing, but to make this work, we need to use the logarithm. Also non-integer
powers.

Problems: 1ae, 3ab, 4, 5, 8, 12, 15ab (these are not easy), 16 (you had this
in elementary calculus, but may have forgotten...).

4.1 Complex Integration. This begins the heart of the course. We will be taking
∫

γ

f(z)dz,

where γ is a contour . So here we discuss what we mean by a contour and it length.
Problems: p. 159: 1bd, 3 (for a circle, we have x = cos t, y = sin t, and you

should modify that), 5, 8, 13abd

4.2 Contour (line) integrals We just change variables.
Problems: p. 170: 3abd, 5, 7, 11, 14ac



4.3 Fundamental Theorem of Calculus Here it means: independent of path,
something that you knew but never realized!

Problems: p. 178: 2, 4 (give reason(s)), 5, 7, 10

4.4 Cauchy’s Theorem. This is the most important result of the course, and one
that one can appreciate many years later. We prove it differently than the book.
The goal is to show Theorem 9: if f is analytic in a simply-connected domain D
and γ is a closed ontour (loop) in D, then

∫
γ

f(z) dz = 0−−

so this course is making something of nothing!
Unfortunately, the proofs in this section (and in most books) require that the

partial derivatives of f be continuous in D. We will follow the ideas of a famous
proof due to E. Goursat in 1900 and this as a consequence of Green’s theorem
(stated on page 193). We will prove it under the assumption that γ is a rectangle
and that f is analytic in each point of γ and its interior; to go from rectangles
to general simply-connected domains is a technical issue I’d rather not do in this
course.

In the book, the partial derivatives of the functions V1 and V2 are required to
be continuous, and we are able to avoid that here: we just need that V1 and V2 are
differentiable in the sense introduced in §2.2 and that the integrand on the right
side of Theorem 11 is continuous. But these hypotheses are guaranteed since we
are assuming that f is analytic at each point, so we have a complete proof making
no extra assumtions.

Problems: p. 199: 6, 7a, 9 all, 10c, 13, 17.

4.5 Cauchy’s integral formula. Now we can start evaluating integrals, even
though we use on the results of the previous section, where the itnegral is zero. It
works because

∫
{|z|=1} z−1 = 2πi.

We find that analytic functions have derivatives of all orders. Thus, we can
finally see that if u is harmonic in a neighborhood of a point z0 then u is infinitely
differentiable (make sure that you understand this).

Problems: p. 212: 4, 5,8, 11, 13. Number 16 is interesting for the more
mathematically-inclined.

4.6 Bounds, Maximum principle. In real variables, if |f(x)| is small, we can’t
say much about the size of |f ′|; because of §4.5, the situation is completely different
here.

Problems: p. 219: 2, 3, 4, 7, 8, 10, 16.

4.7 More on harmonic functions. We may show Poisson’s formula, which solves
the Dirichlet problem for a disk. But it is of perhaps more theoretical interest than
for computation.



Problems: p. 225: 1, 2, 4, 8, 10(!), 13.
5.1 Review of series. (We are likely to go quickly here, but you should read it;

you are likely to be examined on some of it. Joke: at the end of the baseball season
they play the World Sequence, not the World Series.

The geometric series is the heart of the matter. We will mention the ratio test
too. Absolute, uniform convergence. We might mention the integral test in class,
but you need it for problem 13.

Problems: p. 239: 1c,d,f, 4, 5 [the converse is completely false!], 7b,c,d,f, 9,
11b,c,d, 14, 15b,c, 19, 20.

5.2 Taylor series. This is where we understand an important part of calculus.
If f is a function, how can we tall whether f has a Taylor series about a point z0

(or, in real variables, x = x0) which converges to f ; and for what region will this
convergence hold? See Theorem 3, p. 243.

Just as in elementary calculus, the coefficient of (z − z0)n is f (n)(z0)/n!, but
because of Cauchy’s formulas, this appears as a line integral invovling f , not its
derivatives.

Problems: p. 249: 1c,f [of course this is the binomial formula–you might try,
in the same way, f(z) = (z − 1)3 at z0 = 0 using the Taylor formula!], 3, 4, 5, 11,
13 [good problem].

5.3 Power Series. What is the difference between power series and Taulor series?
Well, they start from two different points of view [explain!] but in the end theya
re the same thing. What is remarkable is that the uniform limit of a sequence of
analytic functions is analytic. . This has applications to power series solutions to
ordinary differential equations. Study examples 1 and 2 in the chapter.

Problems: p. 258 1 [this shows that almost anything can happen on the circle
of convergence], 2, 3adfg, 6, 10, 12, 15. Extra: Show that the matter of uniform
limits does not work for functions y = f(x), −1 ≤ x ≤ 1 by finding a sequence of
differentiable functions on [−1, 1] which converge to a function which does not have
a derivative at x = 0; by our work in class, the limit functions has to be continuous,
however. [Hint: let the limit function be y = |x|.]

5.4 theory of Convergence: I may leave this for self-study. In the end, the
convergence theory depends on what I can an ‘article of faith’ [which we math folks
make into an ‘axiom’] that the real number line has no holes. Note (2), which is
a formula for the radius of convergence of a power series. But we know something
better: R is the larges number for which the series

∑
an(z − z0)n is analytic in

{|z − z0| < R}. We meet lim inf, lim sup . (Unline lim, these always exist.)
Problems: p. 266: 1, 3bef, 5acd, 9, 10.

5.5 Laurent series. This is a representation for functions analytic in an annulus
{α < |z − z0| < β}, and it is the sum of two power series, one convergent in
{|z − z0| < β} < and one (in negative powers of (z − z0)) which is holomorphic in
{|z − z0| > α}. There is a formula for the coefficients, by they are not related to
derivates at z = z0; the function might not even make sense at z = z0. we compute



these series usually by algebraic manipulation; formula (1) is less used to compute
aj than to compute the integral on the right side.

Problems: p. 276: 1, 2, 5, 9.

5.6 Singularities, Removable, poles (order m, 0 < m < ∞), essential singulari-
ties. Near an (isolated) essential singularity an analytic function f comes arbitrarily
close to every complex number (the example e1/z at z = 0 shows that the function
might miss one or (if we count ∞) two values. That is, I did problem 14.

Problems: p. 284: 1 (all), 3ab, 4, 7, 12.

5.7 Singularity at ∞. We let w = 1/z and consider the singularity at w = 0.
Problems: p. 290: 1a,e,h [h is tricky!], 3c, 5, 6, 7.

6.1 Residues: The theorem is super-simple at the stage, but we’ll see how
powerful it is for us.

Problems: p. 313: 1, 2, 3ceg.

6.2 Trigonometric integrals: Simple in principle, but factoring is usually awk-
ward.

Problems: p. 317: 1, 4, 7, 11 (11 is tricky!).

6.3 Improper read integrals on (−∞,∞) : We go over the notion of improper
integral, since this is something that, although not new to you, is often misunder-
stood [what is a proper integral? We should be clear on the distinction between
principal value and integral; think of

∫ ∞
−∞ xdx.

Problems: p. 325: 1, 2, 7, 9, 10.

6.4 Improper integrals involving trigonometric functions: In the first lecture I
mentioned that we would do

∫∞
−∞ x−1 sin xdx. Make sure that you appreciate that

it is not obvious that this integral should converge (both at 0 and ∞, although at
0 there is not much of a problem). I do not use Jordan’s lemma, but instead use
the fact that we can integrate on a rectangle rather than a circle; with a rectangle
we han let y and x go to infinity independently.

Problems: p. 336: 1, 5, 6, 10 (even though the book calls some of these
principal values, some are not!).

6.5 Indented Contours: Sometimes if the contour goes through the singularity,
we get only a percentage of the residue. Here is where we do

∫
(sin x)/x dx.

Problems: p. 344: 1ac, 4, 7, 10.

6.6 Multiple-valued functions: Keyhole contours.
Problems: p. 354: 1, 2 (why is this only for this rage of α?), 4, 8, 9a

6.7 Argument principle, Rouché: This is a more theoretical section of applica-
tions of the residue theorem; we give another proof of the fundamental theorem of



algebra. The illustration on p. 361 is one ‘application’ of the theory.
Problems: p. 362: 1c-e; 3 [this is easy!], 7, 8, 10, 13, 18.

7.1 Invariance of Laplace’s equation: We have already seen that soutions to
steady-state temperature problems are harmonic functions. It is quite elementary
(hardly worth an entire section!) to see that if U is harmonic on a domain D′

and φ : D → D′ is conformal (analytic) then the function u(z) = U(φ(z)) is
harmonic. This makes is desirable to find mappings from domains D and D′; a
conformal mapping is a one-one analytic mapping between domains; its inverse is
also conformal (the title ‘conformal’ comes from the fact which we saw back in
problem 8, p. 71: if f is analytic near z0 and f ′(z0) 6= 0, then angles at z0 are
preserved.

Problems: p. 374: 1, 2a-c, 4.

7.2 More general principles
Problems: p. 382: 5, 6, 10.

7.3 Möbius Transformations: w = (az + b)/(cz + d), ad− bc 6= 0.
Problems: p. 392: 3a, c, d [try to use geometry as much as possible],

5 [map the disk only any halfplane and then adjust], 6, 11.

7.4 More Möbius: Symmetrix points are defined on p. 400; we give a
shorter (if less classy) proof of Theorem 6.

Problems: p. 403: 3, 7, 8, 9.

7.5 Schwarz-Christoffel: One more appearance of argument, we map a
polygon onto a halfplane or disk. We should be able to understand the
formula (5) on p. 410; if you do, you ahve learned a lot! The weakness of
the method is that the points x1, x2, . . . , xn on the top of p. 410 determine
the location of w1, w2, . . . , wn, and in practice we are given the {wj}, and
so don’t know what are to be the corresponding {xj}. There is relatively
recent progress on this, see Appendix A-1.

Problems: p. 416: 2, 4, 5 (it may be hard to do these completely,
but you should be able to do something), 8 [elliptic integrals].


