
Exam 2

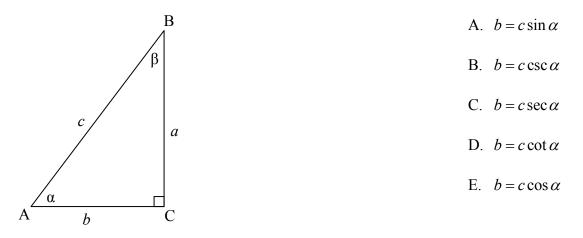
This exam covers all of Sections 6.7, 7.2, and 7.3, and Section 7.4 up to Question #25.

1. What is the perimeter of $\triangle ABC$, to the nearest tenth of a centimeter?

A. 51.4 cm
B. 68.9 cm
C. 55.2 cm
D. 56.8 cm
E. None of the above.

2. Find all solutions of the equation using *n* as an arbitrary integer.

$$\sqrt{3}\csc(\beta)-2=0$$


A.
$$\beta = \frac{4\pi}{3} + 2\pi n, \frac{5\pi}{3} + 2\pi n$$

B. $\beta = \frac{7\pi}{6} + 2\pi n, \frac{11\pi}{6} + 2\pi n$
C. $\beta = \frac{\pi}{3} + 2\pi n, \frac{2\pi}{3} + 2\pi n$
D. $\beta = \frac{\pi}{6} + 2\pi n, \frac{5\pi}{6} + 2\pi n$

E. None of the above

Exam 2

This exam covers all of Sections 6.7, 7.2, and 7.3, and Section 7.4 up to Question #25.

3. Given $\triangle ABC$, express side *b* in terms of angle α and side *c*.

- 4. Did you know an icosagon is a 20-sided polygon? You probably do not care; however, you never know when that knowledge will be useful...A regular icosagon is inscribed in a circle of radius 15 cm. Approximate the perimeter of the icosagon to the nearest tenth of a centimeter.
 - A. 93.9*cm*B. 185.4*cm*C. 46.4*cm*D. 108.2*cm*E. None of the above

Exam 2

This exam covers all of Sections 6.7, 7.2, and 7.3, and Section 7.4 up to Question #25.

5. A 23 foot ladder leans against the side of a building, making a 17° angle with the building. The bottom of the ladder is lonely and wishes to be closer to the building. To the nearest tenth of a degree, what angle will the ladder make with the side of the building if the bottom of the ladder is moved 3 feet closer to the building?

A.	13.2°
B.	9.3°
C.	11.1°
D.	14.5°
E.	None of the above

- Problems 6 and 7: An airplane, traveling at 300 miles per hour, leaves Point A and travels in the direction of 122° for 2 hours. It then heads in a direction of 32° for 1 hour.
- 6. To the nearest whole degree, what direction does it travel to return to Point A?
 - A. 258°
 B. 281°
 C. 239°
 D. 275°
 E. None of the above
- 7. To the nearest tenth of an hour, how long will it take to return to Point A?

A. 2.6 hoursB. 3.0 hours

- C. 2.2 hours
- D. 2.4 hours
- E. None of the above

Exam 2

This exam covers all of Sections 6.7, 7.2, and 7.3, and Section 7.4 up to Question #25.

8. Find all solutions of the equation using *n* as an arbitrary integer.

$$\sqrt{3} \tan\left(\frac{1}{3}\psi\right) = 1$$
A. $\psi = \frac{\pi}{3} + 6\pi n$
B. $\psi = \pi + 3\pi n$
C. $\psi = \frac{3\pi}{4} + 6\pi n$
D. $\psi = \frac{\pi}{2} + 3\pi n$

E. None of the above

9. Find the solutions of the equation that are in the interval $[0, 2\pi)$.

$$\sin\left(2\mu - \frac{\pi}{4}\right) = 1$$
A. $\mu = \frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8}$
B. $\mu = \frac{3\pi}{8}, \frac{11\pi}{8}$
C. $\mu = \frac{\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}$
D. $\mu = \frac{\pi}{4}, \frac{5\pi}{4}$

E. None of the above

Exam 2

This exam covers all of Sections 6.7, 7.2, and 7.3, and Section 7.4 up to Question #25.

10. Find the solutions of the equation that are in the interval $[0, 2\pi)$.

$$2\cos^{2} x - 3\cos x + 1 = 0$$
A. $x = 0, \frac{\pi}{6}, \frac{11\pi}{6}$
B. $x = \frac{\pi}{2}, \pi, \frac{3\pi}{2}$
C. $x = 0, \frac{\pi}{3}, \frac{5\pi}{3}$
D. $x = \frac{5\pi}{6}, \pi, \frac{7\pi}{6}$

E. None of the above

11. Express as a trigonometric function of one angle

 $\sin 54^\circ \cos 12^\circ - \cos 54^\circ \sin 12^\circ$

A. $\cos 42^{\circ}$

- B. $\sin 66^{\circ}$
- C. sin 42°
- D. cos 66°
- E. None of the above

Exam 2

This exam covers all of Sections 6.7, 7.2, and 7.3, and Section 7.4 up to Question #25.

12. Did you know $\frac{19\pi}{12} = \frac{4\pi}{3} + \frac{\pi}{4}$? You probably do not care; however, you never know when that knowledge will be useful...

Find the exact value of $\cos\left(\frac{19\pi}{12}\right)$.

A.
$$\frac{-1+\sqrt{2}}{2}$$

B.
$$\frac{-\sqrt{6}-\sqrt{2}}{4}$$

C.
$$\frac{-1-\sqrt{2}}{2}$$

D.
$$\frac{\sqrt{2}-\sqrt{6}}{4}$$

E.
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$

13. Which of the following is equivalent to
$$\sin\left(\theta - \frac{\pi}{2}\right)$$
?

A. $-\sin\theta$

B. $\cos\theta$

C. $\sin\theta\cos\theta$

D. $-\cos\theta$

E. $-\sin\theta\cos\theta$

Spring 2008

MA 154

Exam 2

This exam covers all of Sections 6.7, 7.2, and 7.3, and Section 7.4 up to Question #25.

14. Find the exact value of $\sin(2\theta)$ if $90^\circ < \theta < 180^\circ$ and $\csc \theta = \frac{7}{6}$.

A.
$$\frac{-12\sqrt{13}}{49}$$

B. $\frac{23}{49}$
C. $\frac{12\sqrt{13}}{49}$
D. $\frac{-23}{49}$

E. None of the above

15. If α and β are section-quadrant angles such that $\sin \alpha = \frac{4}{5}$ and

$$\tan \beta = \frac{-24}{7}$$
, find $\tan(\alpha + \beta)$.

A.
$$\frac{-44}{125}$$

B. $\frac{4}{3}$
C. $\frac{44}{125}$
D. $\frac{-4}{3}$

E. None of the above

Exam 2

This exam covers all of Sections 6.7, 7.2, and 7.3, and Section 7.4 up to Question #25.

Question	Answer	Form A Green
1.	56.8 cm	D
2.	$\beta = \frac{\pi}{3} + 2\pi n, \frac{2\pi}{3} + 2\pi n$	С
3.	$b = c \cos \alpha$	Е
4.	93.9 cm	А
5.	9.3°	В
6.	275°	D
7.	2.2 hours	С
8.	$\psi = \frac{\pi}{2} + 3\pi n$	D
9.	$\mu = \frac{3\pi}{8}, \frac{11\pi}{8}$	В
10.	$x = 0, \frac{\pi}{3}, \frac{5\pi}{3}$	С
11.	sin 42°	С
12.	$\frac{\sqrt{6}-\sqrt{2}}{4}$	Е
13.	$-\cos\theta$	D
14.	$\frac{-12\sqrt{13}}{49}$	А
15.	$\frac{4}{3}$	В

Exam 2 Answers