# MA 525 On Cauchy's theorem and Green's theorem

### 1. INTRODUCTION

No doubt the most important result in this course is Cauchy's theorem. There are many ways to formulate it, but the most simple, direct and useful is this: Let f be analytic inside the simple closed curve  $\gamma$ . Then

$$\int_{\gamma} f(z) \, dz = 0.$$

Certainly the most natural way to prove it is by using Green's theorem, and we state the conclusion (the 'formula') of Green's theorem now, leaving a discussion of the 'appropriate' hypotheses for later. The formula reads: D is a region bounded by a system of curves  $\gamma$  (oriented in the 'positive' direction with respect to D) and P and Q are functions defined on  $D \cup \gamma$ . Then

(1) 
$$\int_{\gamma} P dx + Q dy = \int \int_{D} (\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} dx dy.$$

Certainly for (1) to hold, we need that P, Q have partial derivatives at each point, but there are examples to show that this is not enough. In any case, (1) leads to a trivial proof of Cauchy's theorem (this is only a formal proof, since we have not discussed if we are allowed to use (1); even so, I think it is impressive how 'simple' the proof becomes: f = u + iv, dz = dx + idy, and then

$$\begin{split} \int_{\gamma} f(z) \, dz &= \int_{\gamma} (u + iv) (dx + idy) = \\ &\int_{\gamma} u \, dx - v \, dy + i \int_{\gamma} u \, dy + v \, dx, \end{split}$$

and so if we apply Green's theorem to each of these line integral and use the Cauchy-Riemann equations:  $u_x = v_y$  and  $u_y = -v_x$ , we see the integrand in each double integral in (1) is zero. In that sense, Cauchy's theorem is an immediate consequence of Green's theorem, and in fact Green's theorem [as a special case of Stokes's theorem] is a fundamental result in mathematics and its applications – it is just the fundamental theorem of calculus in higher dimensions.

# 2. What is wrong?

There are two objections to the proof I just presented. One we do not worry about here we have not carefully described what kind of curves we are allowing, and what we mean by the 'positive' direction of circuiting  $\gamma$ . This is really a problem of point-set topology or geometric measure theory, and this note offers no insight on that issue.

However the other objection relates to the hypotheses on P and Q needed to apply Green's theorem. Green's theorem is in all the calculus books, where it is always assumed that P and Q have continuous partial derivatives. When applied to our analytic function f(z), it means that we are assuming that the partial derivatives  $u_x, u_y, v_x$  and  $v_y$  are continuous. Probably this is something that does not worry most students taking a first course, but the purpose of these notes is to show that we do not need that assumption; indeed Green's theorem holds when P and Q satisfy conditions which are immediately seen to be fulfilled when P and Q are the real and imaginary parts of the analytic function f. We will see that the conditions needed for P and Q fit exactly with what f being analytic means. We state Green's theorem in a revised form, where we consider only the case that R is a rectangle and  $\gamma$  is its boundary,  $\partial R$ : **Theorem 1'.** Let P and Q be differentiable inside and on a rectangle R, with  $\gamma = \partial R$ , and suppose that

(2) 
$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$$

is coninuous. Then (1) holds.

NOTE. We will see that if P and Q are differentiable, then they have partial derivatives, but there is no way to show directly that these partial derivatives are continuous. What we need here, is that the expression (2) be continuous. In principle,  $P_y$  and  $Q_x$ might be discontinuous, and yet the expression in (2) would still be continuous were the discontinuities of the individual terms to cancel out.

So to be able to use this revised version of Green's theorem to derive Cauchy's theorem, we check three things: (i) what it means to be differentiable [this is shown in thirdsemester calculus, but often forgotten]; (ii) that u and v are differentiable at each point z at which f'(z) exists, and that the expressions which appear in the bouble integrals are continuous. Finally (iii) we will prove Green's theorem under the hypothesis of Theorem 1'. Step (iii) in fact uses the same argument that E. Goursat introduced to give his famous 'elementary' proof of Cauchy's theorem, which appeared in volume 1 of the *Transactions* of the American Mathematical Society. (The other observations are not original either, but I am collecting them together for convenience.)

#### 3. Differentiability

We consider a real-valued function u in a domain D. DEFINITION. The function u(x,y) is differentiable at (a,b) if there are constants A and B so that

$$u(x,y) - u(a,b) = A(x-a) + B(y-b) + R(x,y),$$

where the 'remainder' R satisfies

(3) 
$$\lim_{(x,y)\to(a,b)}\frac{R(x,y)}{\sqrt{(x-a)^2+(y-b)^2}}=0$$

This is a standard definition in third-semester caluculus. If we set y identically equal to b, and let  $x \to a$ , then  $\sqrt{(x-a)^2 + (y-b)^2} = \sqrt{(x-a)^2} = |x-a|$ , so (3) tells us that

$$\lim_{x \to a} \frac{u(x,b) - u(x,a) - A(x-a)}{|x-a|} = 0.$$

It is quite amazing how useful is this formulation. Since the limit on the right side is zero, we can multiply the left side by any factor of absolute value one without changing the equation (if the limit were 2, we couldn't do this — this is an illustration of the principle that in analysis one rarely proves that  $f \to a$ ; rather we prove that  $f - a \to 0$  or, better,  $|f - a| \to 0!$ ). So let's multiply this equation by |x - a|/(x - a). Then we have at once

$$\lim_{x \to a} \frac{u(x,b) - u(a,b) - A(x-a)}{x-a} = 0:$$

 $u_x(a,b) = A$ ; similarly we see that  $(\partial u/\partial y)(a,b) = B$ .

So we now know that a differentiable function has partial derivatives. However, being differentiable is a much stronger property than only having partial derivatives, since it is a condition independent of how  $(x, y) \rightarrow (a, b)$ . For example, the function  $u(x, y) = xy/(x^2 + y^2)$  has  $u_x(0,0) = u_y(0,0) = 0$ , but u is not even continuous at (0,0) since u(x,x) = 1/2 (on the 45° line through the origin).

NOTE 1. In one-variable calculus, the statement that  $A = f'(x_0)$  can be written as

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{|x - x_0|} = 0,$$

which is quite similar to (3), if far too awkward for us to use in an elementary course. But it shows that (3) is really exactly what you have been using for a long time.

NOTE 2. If you check many of the proofs in a multi-variable calculus course, you will see that differentiability is often all that is needed, although books usually require that partial derivatives be continuous, since that hypothesis is easy to explain and check. Here is one example: if u(x, y) is differentiable and x = x(t), y = y(t) are differentiable [in one variable, that just means that x' and y' exist, but nothing about continuity], then the function u(x(t), y(t)) is a differentiable function of t, and the formula for the chain rule applies:

$$(u(x(t), y(t)))' = u_x x' + u_y y'$$

### 4. First blood

Let us prove a little theorem. The proof is not hard at all, and if you go through it, I hope you will see is that you are just rearranging equalities everywhere; the moral of the stary is that u and v differentiable (which sounds like an contrived definition) is as natural as f = u + iv having a derivative.

**Theorem 1.** Let f = u + iv be defined in some neighborhood of  $z_0 = (a, b)$ . Then f' exists at  $z_0$  if and only if u and v are differentiable at  $z_0$  and at  $z_0$  the partial of u and v satisfy  $u_x = v_y$ ,  $u_y = -v_x$  (Cauchy-Riemann).

*Proof.* First let's assume that  $f'(z_0) = A + iB$ . We show that u and v are differentiable and satisfy Cauchy-Riemann. Let's write  $f(z) - f(z_0)$  in terms of u and v. Then (we freely exchange  $z - z_0$  with (x - a) + i(y - b), etc.):

$$\begin{aligned} f(z) &- f(z_0) - (A + iB)(z - z_0) = (u + iv)(z) - (u + iv)(z_0) - (A + iB)(z - z_0) \\ &= (u + iv)(z) - (u + iv)() - (A + iB)((x - a) + i(y - b)) \\ &= u(z) - u(z_0) - [A(x - a) - B(y - b)] \\ &+ i\{v(z) - v(z_0) - [B(x - a) + A(y - b)]\}. \end{aligned}$$

We may divide by  $z - z_0$  or  $|z - z_0|$  as we wish. If we divide by  $z - z_0$ , the left side tends to 0 since  $A + iB = f'(z_0)$ . But on the right side we have that even after dividing by  $|z - z_0|$ , both the real and imaginary parts also tend to 0. Since the real part has 0 as a limit, u must be differentiable at  $z_0$ , and similarly v must also be differentiable. Moreover, as we saw in §3, the numbers A and B which appear in the definition of differentiability are the partial derivatives. So we have

$$A = u_x(z_0) = v_y(z_0), \ B = v_x(z_0) = -u_y(z_0)$$

the Cauchy-Riemann equations hold.

Now we can go the other way almost by reversing things. Let's assume that u and v are differentiable at  $z_0$  and the partials of u and v satisfy the Cauchy-Riemann equations. Since f = u + iv we may substitute for u and v their differentials, using  $R_1$  and  $R_2$  for the remainder term R in (3) to conclude that

$$\begin{aligned} f(z) - f(z_0) &= (u + iv)(z) - (u + iv)(z_0) = (u(z) - u(z_0)) + i(v(z) - v(z_0)) \\ &= A(x - a) + B(y - b) + R_1 + i[C(x - a) + D(y - b) + R_2] \\ &= A(x - a) + B(y - b) + i[-B(x - a) + A(y - b)] + R_1 + iR_2 \\ &= (A + iB)(z - z_0) + R_1 + iR_2, \end{aligned}$$

so on dividing by  $z - z_0$  or  $|z - z_0|$  as appropriate and recalling (3) we have that  $f'(z_0) = A + iB$ .

# 5. Proof of Theorem 1' (useful form of Green's Theorem)

We first need to know that Green's theorem holds in P (or Q) is a linear function: P(x, y) = A + Bx + Cy, with A, B, C constants. It is clear in this simple case that P has continuous partials, and so the standard proof of Gree's theorem may be used with no guilt, but it is a useful exercise to check it directly. In fact, using elementary calculus, it is straightforward to check that

$$\int_{\gamma} A + Bx \, dx = 0,$$

and so

(4) 
$$\int_{\gamma} P \, dx = \int_{\gamma} C y \, dx$$

(when we consider  $\int_{\gamma} Q dy$ , what will survive is  $\int_{\gamma} B' x dx$  when Q = A' + B' x + C' y).

However, it is not hard to directly check that (1) holds in the situation (4), and I sketch the details when  $\gamma$  is the boundary of the rectangle with sides parallel to the coordinate axes and diagonal vertices (0,0) and  $(\alpha,\beta)$ , where  $\alpha,\beta > 0$ . Then on computing (4) only the terms which involve integration on the horizontal sides survive (on the others, dx = 0) and so

$$\int_{\gamma} Cy \, dx = C \cdot 0(\alpha - 0) - C \cdot \beta(0 - \alpha) = C\alpha\beta:$$

the first term on the right refers to the integral on the bottom of the rectangle, and the second is over the top. You will see that the last term is  $C \iint dxdy$ , as predicted by Green's theorem.

Thus, we may assume that (1) holds for linear functions.

We prove Theorem 1' with R a rectangle, and write  $R = R_0$ . Let us call

(5) 
$$\left| \int_{\gamma} P \, dx + Q \, dy - \iint_{R} (Q_x - P_y) \, dx dy \right| = \Delta_0.$$

If  $\Delta_0 = 0$  there is nothing to prove, so let's assume that  $\Delta_0 = h > 0$ .

Here is Goursat's idea. Divide R into four similar rectangles, and look at the integrand in (5), and compute the same difference for each of these four, calling them  $\Delta$  (we won't bother with subscripts for a moment). We can't have each each difference less than h/4, for if all four differences were less than that, we could add them and then the sum of these four discrepancies would be less than  $h = \Delta_0$  (you should check that they add-certainly the double integrals add, and the line integrals do too, since inside  $R_0$  any contribution from points that are on the boundary of two of the smaller rectangles cancel since the segments of these boundaries are travelled once in each direction). That means that there must be one smaller rectangle, each side of thich is half that of  $R_0$ , for which the difference (which we call  $\Delta_1$ ) in the two terms in at least h/4, and we call that rectangle  $R_1$ .

Now we repeat this argument with  $R_1$  and divide it into four similar rectangles; for one of them, which we call  $R_2$ , bounded by  $\gamma_2$ , we have that  $\Delta_2$ , the expression exhibited in (5) is at least  $h/4^2$ .

We keep on this pattern, and for each positive integer n find rectangle  $R_n$  inside  $R_{n-1}$  whose boundary is  $\gamma_n$  with

(6) 
$$\left|\int_{\gamma_n} P\,dy + Q\,dy - \iint_{R_n} (Q_x - P_y)\,dxdy\right| > h4^{-n}.$$

The *next* step is to use something math people see in topology, but which seems very 'obvious'. Certainly

$$R_0 \supset R_1 \supset R_2 \supset R_3 \ldots$$

and the diameter of  $R_n$  is  $D_0 2^{-n}$ , where  $D_0$  is the diameter of  $R_0$ . What we need is that

$$(7) \qquad \qquad \cap_{n>0} R_n = z_0$$

where  $z_0$  is a point. Since the diameter of  $R_n$  tends to zero, it might be clear that this intersection could not contain more than one point, and it is a basic fact about the plane (or euclidean space in general) that this intersection is nonempty, since certainly the intersection of any finite number  $R_0 \cap R_1 \dots \cap R_k$  is nonempty.

Of course P and Q are differentiable! at  $z_0$ , so near  $z_0$  we have

(8) 
$$P(z) = P(z_0) + A(x-a) + B(y-b) + R = P_0 + Ax + By + R, Q(z) = Q(z_0) + A'(x-a) + B'(y-b) + R' = Q_0 + A'x + B'y + R'$$

where A, A', B, B' are the partial derivatives at  $z_0 = (a, b)$  and

(9) 
$$\lim_{z \to z_0} \left[ \frac{R(z) - R(z_0)}{|z - z_0|} + \frac{R'(z) - R'(z_0)}{|z - z_0|} \right] = 0$$

We use these expansions on the (small) rectangle  $R_n$  where *n* is large, and study the 'difference'  $\Delta_n$ , using the notation from (5). At the very beginning of this chapter, we observed that (1) is true when *P* and *Q* are linear, and so on consulting (8) see that we need only consider the case that P(z) = R(z), Q(z) = R'(z). We look at the line and double integrals which appear in (5) separately.

First, the length of  $\gamma_n$  is  $d_n := c_0 2^{-n}$ , where  $c_0$  is the length of our original  $\gamma$ , and (9) gives that

(10) 
$$\left|\int_{\gamma_n} R\,dx + R'\,dy\right| \le (\varepsilon d_n) \cdot d_n = \varepsilon c_0 4^{-n},$$

using the upper bound  $(\max_{\gamma_n} |R(z)| + |R'(z)|) \cdot |\gamma_n|$ , where  $\varepsilon$  may be taken as small as we wish provided n is large enough.

Now let's look at the double integral

$$\iint_{R_n} [Q_x - P_y] \, dx dy := \int_{R_n} (R')_y - (R)_x \, dx dy$$

and observe that we have made no assumptions about these terms except the basic assumption that the expression in the integrand is continuous!. And it's clever how this is used. We know that  $(Q_x - P_y)(z_0) = 0$  since when we take  $z = z_0$  in (8), it is clear that  $R(z_0) = R'(z_0) = 0$ . But that means that if n is large, the integrand  $(R')_x - R_x$  can also be made as small as we wish on all of  $R_n$ , since  $(R'_x - R_y)(z_0) = 0$ . In short, given  $\varepsilon > 0$ we may choose n so large that

$$\left|\iint_{R_n} R'_x - R_y \, dx dy\right| \le \varepsilon C_0 4^{-n},$$

with  $C_0$  the area of  $R_0$ . Thus if n is so large that both this and (10) are valid, we find for some constant  $C^*$ 

(11) 
$$\Delta_n = \left| \int_{\gamma_n} P \, dx + Q \, dy - \iint_{R_n} (Q_x - P_y) \, dx dy \right| \le C^* \varepsilon 4^{-n},$$

which contradicts our assumption in (6) if  $\varepsilon$  is small compared to h.

This contradiction proves that our version of Green's theorem holds precisely under the hypotheses that are guaranteed by f(z) having a derivative at each point of our rectangle R or its boundary.

(I hope you like the argument, I certainly do!)