MA525ASSIGNMENT SHEETSpring 2008Text: E. Saff, A. Snider Fundamentals of Complex Analysis, Third Edition

We hope to cover most of the text, and in particular give full attention to the many interesting applications. This sheet will be updated throughout the semester, and I willmake some remarks on several of the homework problems. The course will move

fast, and it is important to come to class.

D.	Drasin, MA	A 622 , $4-1974$; e-mail:	drasin@math.purdue.edu
Les	son Section	Study	Homework Assignment
1	1.2	introduction	p 12: 3, 5[there is a clever solution!], 8 [make a picture!], 14, 17
	1.3	Polar cordinates; arg	p. 22: 3, 7 a,e,h, 10 [is this true for Arg in place of arg?], 11, 16,
			17, 25, 28, 29
2	1.4, 1.5	Complex exponential	p. 31: 1c, 3 b,c, 7, 8, 13, 14, 20 [if $z \neq 1$, cross-multiply]
			– these formulas are useful in Fourier series, 22. p 37: 5 a,d,f, 7c
		(tentative: logarithm)	p. 123: 1 a,c,d, 3, 5ac [this is a quadratic!]
3	1.6, 1.7	Some "topology" [definitions]	p. 42: 2-7, 16, 17, 20; p.50 3, 4, 5 a,c,e
4	2.1	review; Complex functions	p. 56: 1 a-c, e, 4a,b 5,6b, 7a, 8a,b, 9, 13
5	2.2, 2.3	limits, continuity	XXX
			MISSING FILE
24	6.1	Residue Theorem	p 313: 1afi, 3df, 6
25	6.3	Rational Integrals	p 325: 1, 3, 10a, 15b
26	6.2	Trig integrals	p 317: 1, 3, 5, 11
27	6.4	Improper	336: 2, 4, 8
28	6.5	Indent	p 344: 1ac, 5, 11
29	6.6	Branch Pts	p. 354: 2, 4, 8, 10
30	8.2-3	Fourier/Laplace transform	p. 473: 1abd, 3ac;
			[notice function graphed on p 469 is 0 for $ t > 6\pi$]
			p 484: 1ab, 3ab, 5s, 6ab
31	8.4	z transform	p. 494: 4a-d, 5ab, 6