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Name: Math 511 July 9, 2008

(Work will be graded on the basis of clarity as well as accuracy:.)

. True-False. Write T or F and give a reason in each case If the answer is F', it would

be convincing to give an example.
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(b) The determinant is a matrix A is unchanged if the rows of A are subject to ele- =
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(c) If x and y are orthogonal (and nonzero) then they are linearly independent.
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(d)) If A is an n x n matrix, A always has at least one eigenvector.
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2. FInd eigenvalues and eigenvectors for the matrix
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(20) 3. Factor the matrix
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into a product QR, recognizing that the first column is a unit vector.
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(15) 4. Find c so that x = 0 is a solution to the system

2z + 5y =c
3z + 4y = 2.

What is y in that situation? . 5»” }l

y —~ L2 s
Crower, X = =

Tl




(15)

5. Let A be a 3 x 3 upper triangular matrix with diagonal entries 1,6, —1. Explain why
it can be diagonalized. How would you find the matrix S so that AS = SA, and what
will the diagonal matrix A be?
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