SOLUTIONS

Math 511

July 9, 200**8**

	(Work will be graded on the basis of clarity as well as accuracy.)
20)	1. True-False. Write T or F and give a reason in each case If the answer is F , it would be convincing to give an example.
	(a) If A is a 5×3 matrix, A^TA is singular. No A^TA is 3×3 and can be much be (b) The determinant is a matrix A is unchanged if the rows of A are subject to ele-
	(b) The determinant is a matrix A is unchanged if the rows of A are subject to ele-
	mentary row operations (as in Chapter 1). Now we can multiply a row by a content of a row by a (c) If x and y are orthogonal (and nonzero) then they are linearly independent.
	(c) If x and y are orthogonal (and nonzero) then they are linearly independent.
	(d)) If A is an $n \times n$ matrix, A always has at least one eigenvector.
	and the same of th

Name: _

(20) 2. Find eigenvalues and eigenvectors for the matrix

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & 0 \end{bmatrix}$$

into a product QR, recognizing that the first column is a unit vector.

(15) 4. Find c so that x = 0 is a solution to the system

$$2x + 5y = c$$
$$3x + 4y = 2.$$

What is
$$y$$
 in that situation?

5. Let A be a 3×3 upper triangular matrix with diagonal entries 1, 6, -1. Explain why it can be diagonalized. How would you find the matrix S so that $AS = S\Lambda$, and what will the diagonal matrix Λ be?

Baustmit eigenvectors, say Ki, X2, X3
Then if Sisthe makix we have AS = SA, where $A = \begin{pmatrix} i & i & i \\ 0 & i & i \end{pmatrix}$