Solutions Name:

Math 511 July 21, 2008

(Work will be graded on the basis of clarity as well as accuracy.)

(20)1. True-False. Write T or F and give a reason in each case If the answer is F, it would be convincing to give an example.

(a) If M is an $n \times n$ matrix with n distinct eigenvalues, then M is similar to a diagonal matrix. I - n lund e-vectors

(c) If A has n distinct eigenvalues, then it is invertible. But in 2^{2} we have 2^{2} 4^{2} 4

Fulse: try (12) -it is similar to (02)
But (22) is NOT similar to (02)

- 2. let F be a singular $n \times n$ matrix. Which of the following is not necessarily true for F?
 - (a) det $e^F \neq 0$
 - (b) $\det (F+I) = 1 + \det F$ NO (by example) (c) F is similar to an upper triangular matrix (d) $\det (Fe^F) = \det F/\det(e^{-F})$

 - $(d)\,\det\,(Fe^F)=\det F/\det(e^{-F})$
 - (e) rank $(FF^T) < n$

Be careful - many of you clamed that

if $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ then $e^{+} = 0$. But $e^{+} \neq 0$,
and furthers A, $e^{+} = e \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

(20) 3. Let V be the vector space of 2×2 real symmetric matrices.

(a) What is the dimension of V; prove it by exhibiting a basis for V.

Dim vi 3. Basis (10) (01) (06) e, ez ez

(b) Let T be the linear transformation on V with $TM = M^T$ (thus a 2×2 matrix is sent to its transpose). Write the matrix of this T with respect to this basis (from (a)).

Tis identify. Its mating

(000)

I accepted 2x2 identity as OK, since people may have been confused since we are taking about 2x2 matrices.

(25) 4. Consider the system of first-order differential equations

$$\frac{dv/dt = w}{dw/dt = v}.$$

(a) Write this in the form u' = Au for an appropriate 2×2 matrix A (here u is a vector):

$$u' = \begin{pmatrix} 01 \\ 10 \end{pmatrix} u$$

(b) Find eigenvalues and eigenvectors for A: indicate them clearly and show work.

$$\lambda = -1$$
 evector $\binom{-1}{2}$
 $\lambda = 1$ evector $\binom{-1}{2}$

(continued on next page)

(c) Find initial conditions $u(0) = u_0$ for some vector u_0 so that the solution decays at $t = \infty$. What is that solution?

So general solution is $u = c(1)e^{t} + c'(1)e^{t}$. Take e = 0.

So gonswer's $u = c(1)e^{t}$

(20) 5. Let A be the matrix

$$\begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix},$$

and show that the quadratic form $\mathbf{x}^T A \mathbf{x}$ is positive definite (you may use any test introduced in class).

• If we write x as $[x, y]^T$ with x and y scalars, write $\mathbf{x}^T A \mathbf{x}$ as a sum of squares (thus your expression will involve x and y).

(20)6. Write down the Jordan form of the matrix

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

and explain in terms of properties of A (such as eigenvalues, nullspace...) how you

arrived at your answer. Find eigenvalues. They are Easy since A is What! $\lambda = 1$ (mult 2), $\lambda = 0$. Or you can compute $\det \begin{pmatrix} 13 & 0 & 12 \\ 0 & 0 & 12 \end{pmatrix}$ - but some students got the

algebra word.

Then eigenvectors; (100)(x)=(0) | evector is (0)(2)(2900)(x)=(0) i evectoris (6) jez

So we know I has to be

The third basis vector is obtained by

(odo) (y) = 2 = (2) i vector is (9)

So M (not required) is (000)

Scratch

2

(-y)

Spread

93 | 86 | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 40 | etc. 114 | 144 | 111