Use the functions, $f(x) = \frac{2x+1}{x-5}$ and g(x) = x+3, to answer questions #1 and #2:

1. Find and simplify (f+g)(3).

- A. $\frac{5}{2}$
- B. $-\frac{1}{2}$
- $C. -\frac{13}{2}$
- $D. \ \frac{3}{2}$
- E. None of the above.

2. Find and simplify $(f \circ g)(x)$.

- $A. \ \frac{5x-14}{x-5}$
- $B. \quad \frac{2x^2 + 4x 15}{x 5}$
- $C. \quad \frac{2x+7}{x-2}$
- $D. \ \frac{2x^2 + 6x + 1}{x^2 + 3x 5}$
- E. None of the above.
- 3. Which of the following graph best depicts the sign chart given by:

1

- 4. Suppose y is directly proportional to the product of w and the square root of x and inversely proportional to the cube of p. If w = 4, x = 25, and p = 2, then y = 6. Find y if w = 7, x = 4, and p = 1.
 - A. $y = \frac{12}{5}$
 - $B. \quad y = \frac{168}{5}$
 - C. $y = \frac{121}{2}$
 - $D. \quad y = \frac{5}{2}$
 - E. Cannot be determined.
- 5. Given the function, $f(x) = x^2 x + 1$, find and simplify $\frac{f(a+h) f(a)}{h}$ (assume $h \ne 0$).
 - $A. \quad \frac{h^2 2a + h + 2}{h}$
 - B. h
 - C. 2a+h
 - D. h-1
 - E. 2a+h-1

6. Solve the following system of equations for *x*:

$$\begin{cases} xy = 6 \\ 2x - y = 1 \end{cases}$$

- A. $x = -\frac{3}{2}$, x = 2
- B. $x = -\frac{7}{2}$, x = 6
- C. x = -2, $x = \frac{3}{2}$
- D. x = -6, $x = \frac{7}{2}$
- E. $x = -\sqrt{\frac{7}{2}}$, $x = \sqrt{\frac{7}{2}}$

Use the graph of y = f(x) given below to answer questions #7 and #8:

7. Find the interval(s) for which f is increasing.

- A. [-3,1]
- B. $[-4,-1] \cup [1,5]$
- C. [-1,2]
- D. $[-4,-1] \cup [2,5]$
- E. No intervals of increasing.

8. Find the domain, D, and range, R, of y = 4f(x-1).

- A. D = [-3, 6]; R = [-12, 8]
- B. D = [-3, 20]; R = [-2, 8]
- C. D = [-5, 4]; R = [-12, 8]
- D. $D = [-4,5]; R = \left[-\frac{3}{4}, \frac{1}{2}\right]$
- E. $D = [-3, 6]; R = \left[-\frac{3}{4}, \frac{1}{2} \right]$

9. Solve the inequality. Express your answer in interval notation.

$$\frac{x-3}{(x+5)(x+1)} \ge 0$$

- A. $(-5,-1) \cup (-1,3]$
- $B. (-5,-1) \cup [3,\infty)$
- $C. \left(-\infty, -5\right) \cup \left(-1, 3\right]$
- $D. [3,\infty)$
- $E. \quad (-\infty, -5) \cup [3, \infty)$
- 10. Given below, on the left, is the graph of a basic function, y = f(x). The graph on the right was obtained by shifting, reflecting, stretching, and/or compressing the basic graph. Which of the following best describes the graph on the right?

- $A. \quad y = -f(x+3)$
- B. y = f(-x) 3
- $C. \quad y = f\left(-x\right) + 3$
- $D. \quad y = -f(x) 3$
- $E. \quad y = -f(x) + 3$
- 11. Find the standard equation of the parabola whose x-intercepts are -6 and 4 and the highest point has y-coordinate 8.

A.
$$y = -\frac{8}{25}(x+1)^2 + 8$$

B.
$$y = -\frac{8}{9}(x-1)^2 + 8$$

C.
$$y = -\frac{2}{9}(x+2)^2 + 8$$

$$D. \quad y = -4(x+1)^2 + 8$$

E.
$$y = -2(x-2)^2 + 8$$

12. Find the maximum or minimum value of the parabola given by $f(x) = 4x^2 + 24x + 38$ and specify whether it is a maximum or minimum value.

A. -3; Maximum

B. 2; Minimum

C. -3; Minimum

D. 2; Maximum

E. Not enough information given.

13. Anthony enters a candy store equipped with \$2.10 to buy two kinds of his favorite candy, Gummi bears and jellybeans. Gummi bears sell for \$3.00 per pound and jellybeans sell for \$2.50 per pound. If he is to buy a total of 0.75 pounds of candy, find the system of equations that would be used to find the amount of each that should be purchased. Let *x* represent the number of pounds of Gummi bears and *y* the number of pounds of jellybeans.

A.
$$\begin{cases} x + y = 2.10 \\ 3.00x + 2.50y = 0.75 \end{cases}$$

B.
$$\begin{cases} x + y = 0.75 \\ 3.00x + 2.50y = 0.75 \end{cases}$$

C.
$$\begin{cases} x + y = 0.75 \\ 3.00x + 2.50y = 2.10 \end{cases}$$

$$D. \begin{cases} x + y = 2.10 \\ 3.00x + 2.50y = 2.10 \end{cases}$$

E. None of the above.

14. Shown below is the apparatus for a zip line (where a person repels down a cable). The two poles are set 75 feet apart. The height of the longer pole is x and the height of the shorter pole is 8 feet. Express the length L of the cable as a function of x. Simplify the function.

A.
$$L(x) = \sqrt{x^2 - 16x + 5689}$$

B.
$$L(x) = \sqrt{x^2 + 5625}$$

$$C. \quad L(x) = \sqrt{x^2 + 5689}$$

$$D. L(x) = x + 75$$

$$E. \quad L(x) = x + 67$$

15. A tour bus company charges \$30 per person up to and including the first 10 people and then \$25 per person for each additional person in the group. Find and simplify a piecewise-defined function, *C*, that specifies the total charge of a tour of *x* people.

A.
$$C(x) = \begin{cases} 30x & \text{if } 0 < x \le 10 \\ 25x & \text{if } x > 10 \end{cases}$$

B.
$$C(x) = \begin{cases} 30x & \text{if } 0 < x \le 10 \\ 25x + 10 & \text{if } x > 10 \end{cases}$$

C.
$$C(x) = \begin{cases} 30x & \text{if } 0 < x \le 10 \\ 25x + 300 & \text{if } x > 10 \end{cases}$$

D.
$$C(x) = \begin{cases} 30x & \text{if } 0 < x \le 10 \\ 25x + 50 & \text{if } x > 10 \end{cases}$$

E.
$$C(x) = \begin{cases} 30x & \text{if } 0 < x \le 10\\ 25x + 550 & \text{if } x > 10 \end{cases}$$