1. Find the supplementary angle to $78^{\circ}5'13''$.

- A. 101°08'30"
- B. 11°55'47"
- C. 101°55'46"
- D. 11°08'30"
- E. None of the above
- 2. Find the quadrant containing ω if $\sec \omega > 0$ and $\tan \omega < 0$.
- A. *QI*
- B. *QII*
- C. QIII
- D. *QIV*
- E. No such ω exist

- 3. Express the angle $\theta = 3.6$ in terms of degrees, minutes, and seconds to the nearest second.
 - A. 206°16'48"
 - B. 206°15'53"
 - C. 206°16'53"
 - D. 206°15'48"
 - E. None of the above

4. Find the exact values of *x* and *y*.

A.
$$x = 7\sqrt{2}, y = \sqrt{147}$$

B.
$$x = 7, y = 7\sqrt{2}$$

C.
$$x = \frac{7}{\sqrt{3}}, y = \frac{14}{\sqrt{3}}$$

D.
$$x = 7\sqrt{3}, y = 14$$

E.
$$x = \frac{7}{\sqrt{2}}, y = \frac{14}{\sqrt{2}}$$

5. Astronomers have discovered a new planet called Dellyworth. It is a large, gaseous planet which is slowly losing its vegetation. Hot air blows continually around its surface. The distance between two points *A* and *B* on a planet's surface is measured along a circle having a center *C* at the center of the planet and radius equal to the distance from the center to the surface. This angle is known as ∠ *ACB*

The **diameter** of Dellyworth is 14,000 miles. What is the distance, to the nearest tenth of a mile, between two points on the surface, A and B, if $m \angle ACB = 7$? (Yes, that is 7 minutes)

6. Approximate the value of *x* to the nearest tenth.

- A. 9.4
- B. 22.0
- c. 12.9
- D. 19.8
- E. None of the above

- 7. Which of the following is equivalent to $\tan \theta + \cot \theta$?
- A. $\sec\theta \csc\theta$
- B. $\cos\theta\sin\theta$
- C. $\cot \theta \csc \theta$
- D. $\cos\theta\csc\theta$
- E. $\tan \theta \sec \theta$
- 8. Find the exact value of $\cos\theta$ if the terminal side of θ is in QII and parallel to the line 4x+7y=3.

A.
$$\frac{-4}{\sqrt{65}}$$

B.
$$\frac{7}{\sqrt{65}}$$

c.
$$\frac{4}{\sqrt{65}}$$

D.
$$\frac{-7}{\sqrt{65}}$$

E. None of the above

9. Let $P(t) = \left(\frac{7}{25}, \frac{-24}{25}\right)$ be the point of intersection between the terminal side of the angle t and the unit circle. Find $P(-t+\pi)$.

A.
$$\left(\frac{-7}{25}, \frac{24}{25}\right)$$

$$B. \quad \left(\frac{-7}{25}, \frac{-24}{25}\right)$$

c.
$$\left(\frac{7}{25}, \frac{-24}{25}\right)$$

D.
$$\left(\frac{7}{25}, \frac{24}{25}\right)$$

E. None of the above

10. Which of the following most closely resembles the graph of y = cos(x) - 2? (There are only four choices)

- 11. Complete the statement: As $x \to 0^+$, $\tan x \to$ _____
- **A.** ∞
- B. 0
- C. $-\infty$
- D. -1
- E. None of the above

12. Approximate $csc(34^{\circ}15')$ to four decimal places.

- A. 1.7814
- В. 1.2084
- c. 1.7768
- D. 1.2098
- E. None of the above
- 13. Approximate, to the nearest 0.01 radian, all angles, in the interval $\left[0,2\pi\right)$, which satisfies the equation $\sec\theta=-1.1389$.
 - A. 2.64, 5.78
 - B. 0.50, 5.78
 - c. 0.50, 3.64
 - D. 2.64, 3.64
 - E. None of the above

14. What is the period of the graphed sine curve?

- A. period = $\frac{\pi}{2}$
- B. period = π
- C. period = $\frac{\pi}{4}$
- D. period = $\frac{3\pi}{4}$
- E. period = 2π

15. Find the equation, in the form $y = a \sin(bx + c)$ for a > 0, b > 0, and least positive real number c, if amplitude = 3, period = 4, and phase shift = -2.

A.
$$y = 3\sin(2x + 4)$$

B.
$$y = 3\sin\left(\frac{\pi}{2}x + \pi\right)$$

$$C. \quad y = 3\sin\left(\frac{\pi}{2}x + \frac{4}{\pi}\right)$$

D.
$$y = 3\sin(2x + \pi)$$

Question	Answer	Letters
1.	101°54'47"	E
2.	QIV	D
3.	206°15'53"	В
4.	$x = \frac{7}{\sqrt{3}}, y = \frac{14}{\sqrt{3}}$	С
5.	14.3 miles	А
6.	12.9	С
7.	$\sec \theta \csc \theta$	А
8.	$\frac{-7}{\sqrt{65}}$	D
9.	$\left(\frac{-7}{25}, \frac{-24}{25}\right)$	В
10.	See Question	С
11.	0	В
12.	1.7768	С
13.	2.64,3.64	D
14.	period $=\pi/2$	А
15.	$y = 3\sin\left(\frac{\pi}{2}x + \pi\right)$	В