- 1. Geometric series. $\sum_{n=0}^{\infty} r^n \quad \begin{cases} = \frac{1}{1-r}, & |r| < 1 \\ \text{diverges}, & |r| \ge 1. \end{cases}$
- **2.** A necessary condition that $\sum_{n=1}^{\infty} a_n$ converge is that $\lim_{n \to \infty} a_n = 0$.
- **3. Integral Test.** Suppose f(x) is continuous, positive, and decreasing on $[a, \infty)$, for some $a \ge 1$. Then

$$\int_{1}^{\infty} f(x) dx$$
 and $\sum_{n=1}^{\infty} f(n)$

both converge or both diverge.

4. p-series.

$$\sum_{n=0}^{\infty} \frac{1}{n^p} \quad \left\{ \begin{array}{ll} \text{converges,} & p>1\\ \text{diverges,} & p\leq 1. \end{array} \right.$$

5. Comparison Test. Assume there is N_0 such that

$$0 < a_n \le b_n, \quad n \ge N_0.$$

(i) If
$$\sum_{n=1}^{\infty} b_n$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.
(ii) If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

6. Limit Comparison Test. Assume $a_n > 0$ and $b_n > 0$ for all n. Suppose

$$\lim_{n \to \infty} \frac{a_n}{b_n} = C, \quad \text{where} \quad 0 < C < \infty.$$

Then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.

7. Alternating Series Test. Given $\sum_{n=1}^{\infty} (-1)^n a_n$, where $a_n > 0$. Suppose

- (i) There is N_0 such that $a_n \ge a_{n+1}$, $n \ge N_0$.
- (ii) $\lim_{n \to \infty} a_n = 0.$

Then the series converges. Moreover, if $S = \sum_{n=1}^{\infty} (-1)^n a_n$, then

$$|S - S_n| \le a_{n+1}.$$

A series
$$\sum_{n=1}^{\infty} a_n$$
 is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ converges. It is
conditionally convergent if it converges, but $\sum_{n=1}^{\infty} |a_n|$ diverges.

8. Theorem. An absolutely convergent series is convergent.

9. Ratio Test. Given
$$\sum_{n=1}^{\infty} a_n$$
, with $a_n \neq 0$ for all n . If

- (i) $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L < 1$, the series converges absolutely.
- (ii) $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L > 1$, the series diverges.

10. Root Test. Given $\sum_{n=1}^{\infty} a_n$. If

- (i) $\lim_{n \to \infty} |a_n|^{1/n} = L < 1$, the series converges absolutely.
- (ii) $\lim_{n \to \infty} |a_n|^{1/n} = L > 1$, the series diverges.

11. Some useful limits.

(i)
$$\lim_{n \to \infty} \frac{n^p}{r^n} = 0$$
, if $|r| > 1$.

(ii)
$$\lim_{n \to \infty} \frac{\ln n}{n^p} = 0, \text{ if } p > 0.$$

(iii)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$