
1. Geometric series.
∞∑

n=0

rn

⎧⎨
⎩

=
1

1 − r
, |r| < 1

diverges, |r| ≥ 1.

2. A necessary condition that
∞∑

n=1

an converge is that lim
n→∞an = 0.

3. Integral Test. Suppose f(x) is continuous, positive, and decreasing
on [a,∞), for some a ≥ 1. Then

∫ ∞

1

f(x) dx and
∞∑

n=1

f(n)

both converge or both diverge.

4. p–series.
∞∑

n=0

1
np

{
converges, p > 1
diverges, p ≤ 1.

5. Comparison Test. Assume there is N0 such that

0 < an ≤ bn, n ≥ N0.

(i) If
∞∑

n=1

bn converges, then
∞∑

n=1

an converges.

(ii) If
∞∑

n=1

an diverges, then
∞∑

n=1

bn diverges.

6. Limit Comparison Test. Assume an > 0 and bn > 0 for all n.
Suppose

lim
n→∞

an

bn
= C, where 0 < C < ∞.

Then
∞∑

n=1

an and
∞∑

n=1

bn both converge or both diverge.



7. Alternating Series Test. Given
∞∑

n=1

(−1)nan, where an > 0. Suppose

(i) There is N0 such that an ≥ an+1, n ≥ N0.

(ii) lim
n→∞an = 0.

Then the series converges. Moreover, if S =
∞∑

n=1

(−1)nan, then

|S − Sn| ≤ an+1.

A series
∞∑

n=1

an is absolutely convergent if
∞∑

n=1

|an| converges. It is

conditionally convergent if it converges, but
∞∑

n=1

|an| diverges.

8. Theorem. An absolutely convergent series is convergent.

9. Ratio Test. Given
∞∑

n=1

an, with an �= 0 for all n. If

(i) lim
n→∞

|an+1|
|an| = L < 1, the series converges absolutely.

(ii) lim
n→∞

|an+1|
|an| = L > 1, the series diverges.

10. Root Test. Given
∞∑

n=1

an. If

(i) lim
n→∞ |an|1/n = L < 1, the series converges absolutely.

(ii) lim
n→∞ |an|1/n = L > 1, the series diverges.



11. Some useful limits.

(i) lim
n→∞

np

rn
= 0, if |r| > 1.

(ii) lim
n→∞

lnn

np
= 0, if p > 0.

(iii) lim
n→∞

(
1 +

1
n

)n

= e.


