1. CIRCLE: $(x-h)^{2}+(y-k)^{2}=r^{2}$
2. PARABOLA: $\quad y-k=a(x-h)^{2}$

$$
y=f(x)=a x^{2}+b x+c \quad(a \neq 0) \quad \text { vertex at: } \quad\left(-\frac{b}{2 a}, c-\frac{b^{2}}{4 a}\right)
$$

For the following formulas, r is the annual interest rate, n is the number of years, k is the frequency of compounding, and i is the periodic rate $\left(i=\frac{r}{k}\right)$.
3. COMPOUND INTEREST FORMULA

A principal P, earning compound interest will grow to a future value $F V$ according to the formula

$$
F V=P(1+i)^{k n}
$$

4. EFFECTIVE RATE OF INTEREST

The effective rate of interest R for an account is given by the formula $R=(1+i)^{k}-1$
5. PRESENT VALUE

The present value $P V$ that must be deposited now to provide a future value $F V$ is given by the formula

$$
P V=F V(1+i)^{-k n}
$$

6. FUTURE VALUE OF AN ANNUITY

The future value $F V$ of an ordinary annuity with deposits of P dollars is given by the formula

$$
F V=\frac{P\left[(1+i)^{k n}-1\right]}{i}
$$

7. SINKING FUND PAYMENT

For an annuity to provide a future value $F V$, the regular payment P is given by the formula

$$
P=\frac{F V i}{(1+i)^{k n}-1}
$$

8. PRESENT VALUE OF AN ANNUITY

The present value $P V$ of an annuity with payments of P dollars is given by the formula

$$
P V=\frac{P\left[1-(1+i)^{-k n}\right]}{i}
$$

9. INSTALLMENT PAYMENTS

The periodic payment P required to repay an amount A is given by

$$
P=\frac{A i}{1-(1+i)^{-k n}}
$$

