Final Exam Review

Chapter 1

Exponents:

$$
\begin{array}{lr}
x^{m} x^{n}=x^{m+n} & x^{-m}=\frac{1}{x^{m}} \\
\left(x^{m}\right)^{n}=x^{m n} & \frac{x^{m}}{x^{n}}=x^{m-n} \\
x^{0}=1 & (x y)^{m}=x^{m} y^{m} \\
\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}} &
\end{array}
$$

Radicals:

$$
\sqrt[b]{x^{a}}=x^{\frac{a}{b}}
$$

Polynomials:
adding, subtracting, multiplying, dividing
factoring -- look for common factors first
three terms--trial and error
two terms--formula or common factor
Rational expressions (fractions with polynomials):
adding, subtracting, multiplying, dividing
Complex fractions (fraction over a fraction)
Rationalizing

Chapter 2
Solving equations:
linear
rational equations (fractions with variable in denominator)--either an answer you can use, an answer you can't use (no solution) or all real x except $x=$??

Applications

Solving quadratic equations-- $a x^{2}+b x+c=0$
(1) solve by factoring
(2) solve by completing the square (do not have to)
(3) solve by quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Imaginary numbers
Radical equations, absolute value equations, etc.

Inequalities, absolute value inequalities:
(1)
$|x|<b$
(2) $|x|>b$
means
$x<-b$ or $x>b$

Inequalities using a sign chart

Chapter 3

distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
midpoint formula: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
circles: $(x-h)^{2}+(y-k)^{2}=r^{2}$
Lines:
slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
equations of lines:
(1) $y-y_{1}=m\left(x-x_{1}\right)$
(2) $y=m x+b$
general form
Finding function values or expressions
Domain, range, increasing, decreasing...
Stretching, shifting, reflecting of graphs piece-wise functions

Parabolas:

Standard form:
$y=a(x-h)^{2}+k$
Vertex: (h, k)
Quadratic form:

$$
y=a x^{2}+b x+c
$$

Vertex: x-coord $=-\frac{b}{2 a}$ or find average of x-int.
plug in to find y
Add, subtract, multiply, divide two functions
Composition of functions $\boldsymbol{f} \circ \boldsymbol{g}$

Chapter 4

Directly proportional: $y=k x$
Inversely proportional: $y=\frac{k}{x}$
Solving (graphing) inequalities using a sign chart

Chapter 9

Two equation/two unknowns
substitution/elmination

Chapter 5

Inverse functions
Exponential equation: $y=a^{x}$
Logarithmic equation: $x=a^{y}$ or $y=\log _{a} x$

Properties:

(1) $\log _{a}(u w)=\log _{a} u+\log _{a} w$
(2) $\log _{a}\left(\frac{u}{w}\right)=\log _{a} u-\log _{a} w$
(3) $\log _{a} u^{c}=c \log _{a} u$

Change of base formula:

$$
\log _{b} u=\frac{\log _{a} u}{\log _{a} b}
$$

Only formulas given:
$A=P\left(1+\frac{r}{n}\right)^{n t}$
$A=P e^{r t}$
Any 3D volume/surface area with the exception of a box.

