- 1. Find the exact value of the expression $\cos^{-1}\left(\frac{-\sqrt{2}}{2}\right)$ whenever it is defined.
 - A. $\frac{5\pi}{4}$
 - B. $\frac{\pi}{4}$
 - C. $\frac{-3\pi}{4}$
 - D. $\frac{-\pi}{4}$
 - E. None of the above.
- 2. Find the period and phase shift of the function.

$$y = \sqrt{3}\cos\left(\frac{\pi}{3}x - \frac{\pi}{2}\right)$$

- A. Period = 6, Phase Shift = $\frac{\pi}{6}$
- B. Period = 6, $Phase Shift = \frac{3}{2}$
- C. $Period = \frac{2\pi}{3}$, $Phase Shift = \frac{3}{2}$
- D. $Period = \frac{2\pi}{3}$, $Phase Shift = \frac{\pi}{6}$
- E. None of the above.

3. Find the equation of the function graphed below in the form $y = a \sin(bx + c)$ for a > 0, b > 0, and least positive real number c.

A.
$$y = 4\sin\left(2x + \frac{\pi}{2}\right)$$

B.
$$y = 4\sin(x + \pi)$$

C.
$$y = 4\sin(2x + 2\pi)$$

D.
$$y = 4\sin\left(\frac{1}{2}x + \pi\right)$$

E.
$$y = 4\sin(x+2\pi)$$

4. A ship leaves port at 1:00 PM and sails in the direction N38°W at a rate of 31 miles per hour. Another ship leaves the same port at the same time and travels S52°W at a rate of 50 miles per hour. How far apart are the two ships at 3:00 PM? Please round your answer to the nearest mile.

- 5. An airplane flying at a speed of 410 miles per hour flies from a Point A in the direction 115° for 2 hours and then flies in the direction 25° for one hour. What direction does the plane now have to travel to get back to Point A? Please round your answer to the nearest whole degree.
 - A. 263°
 - B. 252°
 - C. 268°
 - D. 227°
 - E. None of the above.
- 6. Given $\beta = 60^{\circ}$ and a = 4 in $\triangle ABC$ with $\gamma = 90^{\circ}$, find the **exact** value of b.
 - A. $4\sqrt{3}$
 - B. 2
 - C. $\frac{4\sqrt{3}}{3}$
 - D. 8
 - E. None of the above.
- 7. Express as a trigonometric functions of one angle.
 - $\sin 54^{\circ} \cos 12^{\circ} \cos 54^{\circ} \sin 12^{\circ}$

- A. $\cos 42^{\circ}$
- B. sin 66°
- C. cos 66°
- D. sin 42°

E. None of the above.

8. Find all the solutions of the equation, using n as arbitrary integer.

$$\sin(x) = \frac{-\sqrt{2}}{2}$$

A.
$$x = \frac{\pi}{4} + 2\pi n, 3\frac{7\pi}{4} + 2\pi n$$

B.
$$x = \frac{4\pi}{3} + 2\pi n, \frac{5\pi}{3} + 2\pi n$$

C.
$$x = \frac{5\pi}{4} + 2\pi n, \frac{7\pi}{4} + 2\pi n$$

D.
$$x = \frac{\pi}{3} + 2\pi n, \frac{2\pi}{3} + 2\pi n$$

- E. None of the above.
- 9. Find all the solutions of the equation, using n as arbitrary integer.

$$\sqrt{3}\cot\left(\frac{1}{4}t\right) = 1$$

A.
$$t = \frac{4\pi}{3} + 4\pi n$$

B.
$$t = \frac{\pi}{24} + \frac{\pi}{4}n$$

C.
$$t = \frac{2\pi}{3} + 4\pi n$$

D.
$$t = \frac{\pi}{12} + \frac{\pi}{4}n$$

E. None of the above.

10. Find the solutions of the equation that are in the interval $[0, 2\pi)$.

 $2\cos^2 t - 3\cos t + 1 = 0$

- A. $t = \frac{\pi}{6}, \frac{11\pi}{6}, 0$
- B. $t = \frac{\pi}{3}, \frac{5\pi}{3}, 0$
- C. $t = \frac{5\pi}{6}, \frac{7\pi}{6}, \pi$
- D. $t = \frac{2\pi}{3}, \frac{4\pi}{3}, \pi$
- E. None of the above.

11. Find the solutions of the equation that are in the interval $[0, 2\pi)$.

$$\sin^2(t) + \cos(2t) = 0$$

- A. $t = \frac{\pi}{3}, \frac{2\pi}{3}$
- B. $t = \frac{7\pi}{6}, \frac{11\pi}{6}$
- C. $t = 0, \pi$
- D. $t = \frac{\pi}{2}, \frac{3\pi}{2}$
- E. Undefined

- 12. If $\sin \alpha = \frac{7}{8}$ and $\cos \beta = \frac{7}{25}$ for a second-quadrant angle α and a fourth-quadrant angle β , find the exact value of $\cos(\alpha \beta)$.
 - A. $\frac{-7\sqrt{15} + 168}{200}$
 - B. $\frac{7\sqrt{15} + 168}{200}$
 - C. $\frac{-7\sqrt{15}-168}{200}$
 - D. $\frac{7\sqrt{15}-168}{200}$
 - E. None of the above.
- 13. Find the exact value of $\sin 2\theta$ for $\sec \theta = \frac{-7}{4}$ and $90^{\circ} < \theta < 180^{\circ}$.
 - A. $\frac{-8\sqrt{33}}{49}$
 - B. $\frac{17}{49}$
 - C. $\frac{8\sqrt{33}}{49}$
 - D. $\frac{-17}{49}$
 - E. None of the above.

- 14. A 33 foot ladder leans against the side of a building making a 68° angle with the ground. If the bottom of the ladder is then moved 1 foot farther away from the base of the building, how much does the angle the ladder makes with the ground change? Round to the nearest tenth of a degree.
 - A. 2.1°
 - B. 1.3°
 - C. 2.4°
 - D. 1.9°
 - E. None of the above.

- 15. Find the exact value of the expression $\tan \left[2 \arccos \left(\frac{-1}{8} \right) \right]$.
 - A. $\frac{-\sqrt{63}}{31}$
 - B. $\frac{16}{63}$
 - C. $\frac{\sqrt{63}}{31}$
 - D. $\frac{-16}{63}$
 - E. None of the above.

Question	Answer	Letters
1.	$\frac{3\pi}{4}$	Е
2.	$Period = 6$, $Phase Shift = \frac{3}{2}$	В
3.	$y = 4\sin\left(x + \pi\right)$	В
4.	118 miles	D
5.	268°	С
6.	$4\sqrt{3}$	A
7.	sin 42°	D
8.	$x = \frac{5\pi}{4} + 2\pi n, \frac{7\pi}{4} + 2\pi n$	С
9.	$t = \frac{4\pi}{3} + 4\pi n$	A
10.	$t = \frac{\pi}{3}, \frac{5\pi}{3}, 0$	В
11.	$t = \frac{\pi}{2}, \frac{3\pi}{2}$	D
12.	$\frac{-7\sqrt{15} - 168}{200}$	С
13.	$\frac{-8\sqrt{33}}{49}$	A
14.	1.9°	D
15.	$\frac{\sqrt{63}}{31}$	С