It is not necessary to complete all work, so long as when reading the paper I feel confident that all you have omitted is routine algebra, etc. Please write neatly so I can follow your work, that is part of your job. Be sure to justify asserts you make. I prefer pencil.

(20) 1(a). Finish the sentence: a (smooth) vector field \mathbf{F} in \mathbf{R}^3 is conservative if:

There is a Csealar) of with 7 f = F

(b). Let **F** be as in (a). Derive the identity $\nabla \cdot (\nabla \times \mathbf{F}) = \mathbf{0}$.

Here F = (BQ)R) (not fx, fx fz) (

Here F = (BQ)R) Computation to be made, (20) 2. Let S be the lower hemisphere $x^2+y^2+z^2=4$, $z\leq 0$, and $\mathbf{c}=\partial S$, oriented so that the (right-hand) normal to S points upward. Let $\mathbf{F}=(x+z,y+z,2z)$. Stokes's theorem relates the integral of \mathbf{F} on \mathbf{c} (oriented as indicated) to a certain surface integral on S. Parametrize S and \mathbf{c} and set up the two integrals which Stokes's theorem says are equal. **Do NOT evaluate these integrals!**

 $\begin{array}{lll}
& = (1, 1, 0) \\
& = (1, 1, 0) \\
& = (1, 1, 0) \\
& = (1, 1, 0) \\
& = (2 \cot 2 \sin t, 0) \\
& = (2 \cot 2 \sin t, 0) \\
& = (3 \cot 2 \sin t, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = (4, 1, 0) \\
& = ($

Then write as $\int \int (H,1,0) \cdot (T_n \times T_v) du dv$

3. Let D be the rectangle $0 \le x \le 2$, $0 \le y \le 3$, $\gamma = \partial D$. Consider $\int_{\gamma} y \, dx - 2x \, dy$. Explain how Green's theorem relates this to a certain area, and compute the line integral directly to see the Green's theorem gives the right answer.

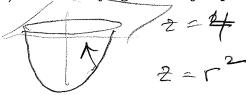
 $\int y dx - 2x dy = -3 \iint dx dy = -18$ Four line integrals,

(1) $\int_{0}^{2} dx - 2x \cdot 0 = 0$ (2) $\int_{0}^{3} 0 - 4 dy = -12$ (3) $\int_{0}^{3} 3 dx - 2x \cdot 0 = -6$ (4) $\int_{0}^{3} y \cdot 0 - 2 \cdot 0 dy = 0$

(20)4. Let S be the parameterized surface given as

$$S = \Phi(u, v) = (u \cos v, u \sin v, u^2)$$
 $0 \le u \le 2, \ 0 \le v \le 2\pi.$

(a) View S as lying in the xyz-space. Sketch S and its boundary.



(b) Find the equation of the tangent plane to S at (1,1,2). Is the normal you found pointing toward the z-axis or away from it?

$$Tu = (css, sins, 2u) \qquad (1,1,2)!$$

$$Tv = (-s, nou, cess, u. 0) \qquad u = \sqrt{2}, 5 - \sqrt{4}$$

$$Tu \times To = \left[css & sins & 2u \\ -sins & ucess & 0 \\ \end{array} \right]$$

 $=\left(-2u^{2}a_{N}\sigma_{3}-2u^{2}sin\sigma_{3}u\right)=\left(-\frac{4}{\sqrt{2}},\frac{4}{\sqrt{2}}\right)$ Jane due often as (-4, -4, 2) component) $= 2(\chi - 1) - 2(y - 1) + (z - 2) = 0$

Plane

5. Let $\mathbf{F} = \langle (1/2)z^2, 16\sin y, xz \rangle$, and γ the curve (helix) $\gamma := (\cos t, \sin t, t^2), \ 0 \le t \le 1$ (20)1. Find the work done by **F** on γ . (There is more than one way to do this!)

Subshift of al (ast, sont, t2) W= S(2)+4, 16 sin(sint), 2 cest). (-sint, cest, 26) dt (can be done directly). But ! $F = \nabla(\frac{1}{2}z^2x + 16 \cos y)$ So answer is founts (1,0,0) to (cest, Sin 1,1)

= cus 1 - 16 Cos (sin 1) - (\(\frac{1}{2} \) - \(\frac{1}{2} \) \(\frac{1}{2} \)